On a family of graph manifolds of genus 2
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 97-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct an infinite family of graph manifolds. These manifolds are obtained by gluing a Seifert manifold $(D^2;(2,-1),(2k+1,k))$, where $k\geqslant 1$, and a Seifert manifold $(M^2;(p_1,q_1),(p_2,q_2))$, where $0$. The gluing homeomorphism is determined by matrix $\left(\begin{array}{cc} 0 1 \\ 1 0 \end{array}\right)$ in a natural coordinate systems on boundaries of the Seifert manifolds. We classify those manifolds and prove that all of them have genus two. In addition, for all of them we calculate their first homology groups.
@article{VCHGU_2009_11_a10,
     author = {F. G. Korablev},
     title = {On a family of graph manifolds of genus 2},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {97--104},
     year = {2009},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a10/}
}
TY  - JOUR
AU  - F. G. Korablev
TI  - On a family of graph manifolds of genus 2
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2009
SP  - 97
EP  - 104
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a10/
LA  - ru
ID  - VCHGU_2009_11_a10
ER  - 
%0 Journal Article
%A F. G. Korablev
%T On a family of graph manifolds of genus 2
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2009
%P 97-104
%N 11
%U http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a10/
%G ru
%F VCHGU_2009_11_a10
F. G. Korablev. On a family of graph manifolds of genus 2. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 97-104. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a10/

[1] S. V. Matveev, A. T. Fomenko, Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991 | MR

[2] Y. Moriah, J. Schultens, “Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal”, Topology, 37:5 (1998), 1089–1112 | DOI | MR | Zbl

[3] J. Schultens, “Heegaard splittings of graph manifolds”, Geometry and Topology, 8 (2005), 831—876 | DOI | MR