On a family of graph manifolds of genus 2
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 97-104
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an infinite family of graph manifolds. These
manifolds are obtained by gluing a Seifert manifold
$(D^2;(2,-1),(2k+1,k))$, where $k\geqslant 1$, and a Seifert
manifold $(M^2;(p_1,q_1),(p_2,q_2))$, where $0$. The
gluing homeomorphism is determined by matrix
$\left(\begin{array}{cc}
0 1 \\
1 0
\end{array}\right)$ in a natural coordinate systems on boundaries
of the Seifert manifolds. We classify those manifolds and prove
that all of them have genus two. In addition, for all of them we
calculate their first homology groups.
@article{VCHGU_2009_11_a10,
author = {F. G. Korablev},
title = {On a family of graph manifolds of genus 2},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {97--104},
publisher = {mathdoc},
number = {11},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a10/}
}
TY - JOUR AU - F. G. Korablev TI - On a family of graph manifolds of genus 2 JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2009 SP - 97 EP - 104 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a10/ LA - ru ID - VCHGU_2009_11_a10 ER -
F. G. Korablev. On a family of graph manifolds of genus 2. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 97-104. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a10/