Properties od pseudoresolvents and conditions of the existence of degenerate operator semigroups
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 12-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some properties of pseudoresolvents are proved. They are used to simplify the formulation of existence conditions of degenerate strongly continuous semigroups and groups.
@article{VCHGU_2009_11_a1,
     author = {V. E. Fedorov},
     title = {Properties od pseudoresolvents and conditions of the existence of degenerate operator semigroups},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {12--19},
     year = {2009},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a1/}
}
TY  - JOUR
AU  - V. E. Fedorov
TI  - Properties od pseudoresolvents and conditions of the existence of degenerate operator semigroups
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2009
SP  - 12
EP  - 19
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a1/
LA  - ru
ID  - VCHGU_2009_11_a1
ER  - 
%0 Journal Article
%A V. E. Fedorov
%T Properties od pseudoresolvents and conditions of the existence of degenerate operator semigroups
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2009
%P 12-19
%N 11
%U http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a1/
%G ru
%F VCHGU_2009_11_a1
V. E. Fedorov. Properties od pseudoresolvents and conditions of the existence of degenerate operator semigroups. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 12-19. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a1/

[1] V. E. Fedorov, “Lineinye uravneniya tipa Soboleva s otnositelno $p$-radialnymi operatorami”, Dokl. RAN, 351:3 (1996), 316—318 | MR | Zbl

[2] V. E. Fedorov, “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173—200

[3] V. E. Fedorov, “Vyrozhdennye silno nepreryvnye gruppy operatorov”, Izv. vuzov. Matematika, 2000, no. 3, 54—65 | Zbl

[4] V. E. Fedorov, “Obobschenie teoremy Khille — Iosidy na sluchai vyrozhdennykh polugrupp v lokalno vypuklykh prostranstvakh”, Sib. mat. zhurn., 46:2 (2005), 426—448 | MR | Zbl

[5] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, Inostr. lit., M., 1962 | MR