Asymptotics of two-dimensional integrals depending singularity on a small parameter
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 5-11
Cet article a éte moissonné depuis la source Math-Net.Ru
The asymptotics is constructed for integrals of form $\iint\limits_w \frac{dxdy}{\epsilon^2+\chi(x,y)}$ where $\omega$ is some vicinity of a critical point $(0,0)$ in which function $\chi(x,y)$ is equal to zero. It is considered the case in which function $\chi(x,y)$ addresses in a zero on two crossed curves and has a special appearance.
@article{VCHGU_2009_11_a0,
author = {A. A. Ershov},
title = {Asymptotics of two-dimensional integrals depending singularity on a small parameter},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {5--11},
year = {2009},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a0/}
}
TY - JOUR AU - A. A. Ershov TI - Asymptotics of two-dimensional integrals depending singularity on a small parameter JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2009 SP - 5 EP - 11 IS - 11 UR - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a0/ LA - ru ID - VCHGU_2009_11_a0 ER -
%0 Journal Article %A A. A. Ershov %T Asymptotics of two-dimensional integrals depending singularity on a small parameter %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2009 %P 5-11 %N 11 %U http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a0/ %G ru %F VCHGU_2009_11_a0
A. A. Ershov. Asymptotics of two-dimensional integrals depending singularity on a small parameter. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 5-11. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a0/
[1] M. V. Fedoryuk, Asimptotika, integraly i ryady, Nauka, M., 1987 | MR
[2] E. Ya. Riekstynsh, Asimptoticheskie razlozheniya integralov, v. 1–2, Zinatne, Riga, 1974
[3] E. Ya. Riekstynsh, Asimptoticheskie razlozheniya integralov, v. 3, Zinatne, Riga, 1981 | MR
[4] T. Breker, L. Lander, Differentsiruemye rostki i katastrofy, Platon, M., 1997
[5] V. I. Arnold, Teoriya katastrof, MGU, M., 1983 | MR
[6] A. M. Ilin, A. R. Danilin, Asimptoticheskie metody v analize, Fizmatlit, M., 2009