Asymptotics of two-dimensional integrals depending singularity on a small parameter
    
    
  
  
  
      
      
      
        
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 5-11
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The asymptotics is constructed for integrals of form 
 $\iint\limits_w \frac{dxdy}{\epsilon^2+\chi(x,y)}$ where $\omega$ is some vicinity of a critical point $(0,0)$ in which function $\chi(x,y)$ is equal to zero. It is considered the case in which function $\chi(x,y)$ addresses in a zero on two crossed curves and  has a special appearance.
			
            
            
            
          
        
      @article{VCHGU_2009_11_a0,
     author = {A. A. Ershov},
     title = {Asymptotics of two-dimensional integrals depending singularity on a small parameter},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {5--11},
     publisher = {mathdoc},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a0/}
}
                      
                      
                    TY - JOUR AU - A. A. Ershov TI - Asymptotics of two-dimensional integrals depending singularity on a small parameter JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2009 SP - 5 EP - 11 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a0/ LA - ru ID - VCHGU_2009_11_a0 ER -
%0 Journal Article %A A. A. Ershov %T Asymptotics of two-dimensional integrals depending singularity on a small parameter %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2009 %P 5-11 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a0/ %G ru %F VCHGU_2009_11_a0
A. A. Ershov. Asymptotics of two-dimensional integrals depending singularity on a small parameter. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 5-11. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a0/
