Asymptotics of two-dimensional integrals depending singularity on a small parameter
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 5-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotics is constructed for integrals of form $\iint\limits_w \frac{dxdy}{\epsilon^2+\chi(x,y)}$ where $\omega$ is some vicinity of a critical point $(0,0)$ in which function $\chi(x,y)$ is equal to zero. It is considered the case in which function $\chi(x,y)$ addresses in a zero on two crossed curves and has a special appearance.
@article{VCHGU_2009_11_a0,
     author = {A. A. Ershov},
     title = {Asymptotics of two-dimensional integrals depending singularity on a small parameter},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {5--11},
     year = {2009},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a0/}
}
TY  - JOUR
AU  - A. A. Ershov
TI  - Asymptotics of two-dimensional integrals depending singularity on a small parameter
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2009
SP  - 5
EP  - 11
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a0/
LA  - ru
ID  - VCHGU_2009_11_a0
ER  - 
%0 Journal Article
%A A. A. Ershov
%T Asymptotics of two-dimensional integrals depending singularity on a small parameter
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2009
%P 5-11
%N 11
%U http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a0/
%G ru
%F VCHGU_2009_11_a0
A. A. Ershov. Asymptotics of two-dimensional integrals depending singularity on a small parameter. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 11 (2009), pp. 5-11. http://geodesic.mathdoc.fr/item/VCHGU_2009_11_a0/

[1] M. V. Fedoryuk, Asimptotika, integraly i ryady, Nauka, M., 1987 | MR

[2] E. Ya. Riekstynsh, Asimptoticheskie razlozheniya integralov, v. 1–2, Zinatne, Riga, 1974

[3] E. Ya. Riekstynsh, Asimptoticheskie razlozheniya integralov, v. 3, Zinatne, Riga, 1981 | MR

[4] T. Breker, L. Lander, Differentsiruemye rostki i katastrofy, Platon, M., 1997

[5] V. I. Arnold, Teoriya katastrof, MGU, M., 1983 | MR

[6] A. M. Ilin, A. R. Danilin, Asimptoticheskie metody v analize, Fizmatlit, M., 2009