Holomorphic operator semigroups with strong degeneration
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 68-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work strongly holomorphic semigroups of the Sobolev type equation $L\dot u(t)=Mu(t)$ in a locally convex space degenerating on chains of $M$-adjoint vectors of operator $M$ of arbitrary length are constructed. It is the case of degenerate semigroups with more “wide” kernel than in the case of $(L,p)$-sectorial operator $M$. The example of an equation having resolving semigroup with strong degeneration is found.
@article{VCHGU_2008_10_a9,
     author = {V. E. Fedorov},
     title = {Holomorphic operator semigroups with strong degeneration},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {68--74},
     year = {2008},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a9/}
}
TY  - JOUR
AU  - V. E. Fedorov
TI  - Holomorphic operator semigroups with strong degeneration
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 68
EP  - 74
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a9/
LA  - ru
ID  - VCHGU_2008_10_a9
ER  - 
%0 Journal Article
%A V. E. Fedorov
%T Holomorphic operator semigroups with strong degeneration
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 68-74
%N 10
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a9/
%G ru
%F VCHGU_2008_10_a9
V. E. Fedorov. Holomorphic operator semigroups with strong degeneration. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 68-74. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a9/

[1] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR

[2] G. A. Sviridyuk, V. E. Fedorov, “Analiticheskie polugruppy s yadrami i lineinye uravneniya tipa Soboleva”, Sib. mat. zhurn., 36:5 (1995), 1130–1145 | MR

[3] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York–Basel–Hong Kong, 1999 | MR

[4] G. A. Sviridyuk, V. E. Fedorov, “O edinitsakh analiticheskikh polugrupp operatorov s yadrami”, Sib. mat. zhurn., 39:3 (1998), 604–616 | MR

[5] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR

[6] V. E. Fedorov, “Golomorfnye razreshayuschie polugruppy uravnenii sobolevskogo tipa v lokalno vypuklykh prostranstvakh”, Mat. sb., 195:8 (2004), 131—160 | DOI

[7] V. E. Fedorov, “O sovpadenii fazovogo prostranstva uravneniya sobolevskogo tipa s obrazom razreshayuschei polugruppy v sluchae suschestvenno osoboi tochki v beskonechnosti”, Vestn. Chelyab. un-ta. Ser. 3. Matematika. Mekhanika, 1999, no. 1 (4), 198—202