The inverse spectral problem for a power of the Laplace operator in the case of the Neuman problem on a parallelepiped
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 63-67
Cet article a éte moissonné depuis la source Math-Net.Ru
Sufficient conditions on a sequence of complex numbers for the coincidence with the spectrum of perturbed Laplace operator generated by the Neumann problem on n-dimensional parallelepiped are found.
@article{VCHGU_2008_10_a8,
author = {A. I. Sedov and G. A. Zakirova},
title = {The inverse spectral problem for a power of the {Laplace} operator in the case of the {Neuman} problem on a parallelepiped},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {63--67},
year = {2008},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a8/}
}
TY - JOUR AU - A. I. Sedov AU - G. A. Zakirova TI - The inverse spectral problem for a power of the Laplace operator in the case of the Neuman problem on a parallelepiped JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2008 SP - 63 EP - 67 IS - 10 UR - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a8/ LA - ru ID - VCHGU_2008_10_a8 ER -
%0 Journal Article %A A. I. Sedov %A G. A. Zakirova %T The inverse spectral problem for a power of the Laplace operator in the case of the Neuman problem on a parallelepiped %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2008 %P 63-67 %N 10 %U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a8/ %G ru %F VCHGU_2008_10_a8
A. I. Sedov; G. A. Zakirova. The inverse spectral problem for a power of the Laplace operator in the case of the Neuman problem on a parallelepiped. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 63-67. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a8/
[1] A. I. Sedov, G. A. Zakirova, “Obratnaya zadacha spektralnogo analiza dlya stepeni operatora Laplasa s potentsialom na parallelepipede”, Matematika. Mekhanika. Informatika : materialy Vseros. nauch. konf., Chelyab. gos. un-t, Chelyabinsk, 2007, 160—167
[2] A. I. Sedov, G. A. Zakirova, “O suschestvovanii i edinstvennosti resheniya obratnoi zadachi spektralnogo analiza dlya stepeni operatora Laplasa na parallelepipede”, Vestn. MaGU. Matematika, 2006, no. 9, 145—149, MaGU, Magnitogorsk
[3] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 2, Inostr. lit., M., 1961 | MR