The inverse spectral problem for a power of the Laplace operator in the case of the Neuman problem on a parallelepiped
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 63-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions on a sequence of complex numbers for the coincidence with the spectrum of perturbed Laplace operator generated by the Neumann problem on n-dimensional parallelepiped are found.
@article{VCHGU_2008_10_a8,
     author = {A. I. Sedov and G. A. Zakirova},
     title = {The inverse spectral problem for a power of the {Laplace} operator in the case of the {Neuman} problem on a parallelepiped},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {63--67},
     year = {2008},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a8/}
}
TY  - JOUR
AU  - A. I. Sedov
AU  - G. A. Zakirova
TI  - The inverse spectral problem for a power of the Laplace operator in the case of the Neuman problem on a parallelepiped
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 63
EP  - 67
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a8/
LA  - ru
ID  - VCHGU_2008_10_a8
ER  - 
%0 Journal Article
%A A. I. Sedov
%A G. A. Zakirova
%T The inverse spectral problem for a power of the Laplace operator in the case of the Neuman problem on a parallelepiped
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 63-67
%N 10
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a8/
%G ru
%F VCHGU_2008_10_a8
A. I. Sedov; G. A. Zakirova. The inverse spectral problem for a power of the Laplace operator in the case of the Neuman problem on a parallelepiped. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 63-67. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a8/

[1] A. I. Sedov, G. A. Zakirova, “Obratnaya zadacha spektralnogo analiza dlya stepeni operatora Laplasa s potentsialom na parallelepipede”, Matematika. Mekhanika. Informatika : materialy Vseros. nauch. konf., Chelyab. gos. un-t, Chelyabinsk, 2007, 160—167

[2] A. I. Sedov, G. A. Zakirova, “O suschestvovanii i edinstvennosti resheniya obratnoi zadachi spektralnogo analiza dlya stepeni operatora Laplasa na parallelepipede”, Vestn. MaGU. Matematika, 2006, no. 9, 145—149, MaGU, Magnitogorsk

[3] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 2, Inostr. lit., M., 1961 | MR