On existence of solutions for elliptic equations at resonance
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 44-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper devoted to generalization of one theorem by V. N. Pavlenko and V. V. Vinokur (2001) on existence for semilinear elliptic boundary value problems at resonance. In distinct from mentioned result, we consider unbounded nonlinearity and give new sufficient conditions on its growth for existance of solutions.
@article{VCHGU_2008_10_a5,
     author = {M. G. Lepchinski},
     title = {On existence of solutions for elliptic equations at resonance},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {44--48},
     year = {2008},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a5/}
}
TY  - JOUR
AU  - M. G. Lepchinski
TI  - On existence of solutions for elliptic equations at resonance
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 44
EP  - 48
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a5/
LA  - ru
ID  - VCHGU_2008_10_a5
ER  - 
%0 Journal Article
%A M. G. Lepchinski
%T On existence of solutions for elliptic equations at resonance
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 44-48
%N 10
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a5/
%G ru
%F VCHGU_2008_10_a5
M. G. Lepchinski. On existence of solutions for elliptic equations at resonance. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 44-48. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a5/

[1] V. N. Pavlenko, V. V. Vinokur, “Rezonansnye kraevye zadachi dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Izv. vuzov. Matematika, 2001, no. 5, 45—58

[2] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972 | MR

[3] V. N. Pavlenko, “O suschestvovanii polupravilnykh reshenii pervoi kraevoi zadachi dlya uravneniya parabolicheskogo tipa s razryvnoi monotonnoi nelineinostyu”, Differents. uravneniya, 27:3 (1991), 520—526 | MR

[4] V. N. Pavlenko, Uravneniya i variatsionnye neravenstva s razryvnymi nelineinostyami, avtoref. dis. ... d-ra fiz.-mat. nauk : 01.01.02, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 1995

[5] M. G. Lepchinskii, Suschestvovanie i ustoichivost reshenii kraevykh zadach ellipticheskogo tipa s razryvnymi nelineinostyami, dis. ... kand. fiz.-mat. nauk : 01.01.02, UrGU, Ekaterinburg, 2006.

[6] M. A. Krasnoselskii, A. V. Pokrovskii, Sistemy s gisterezisom, Nauka, M., 1983 | MR