The finding of the eigenvalues of perturbed discrete operators
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 34-43

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of regularized tracks for the finding of the eigenvalues of a perturbed discrete operator is generalized on the case when the eigenvalues of nonperturbed operator have arbitrary multiplicity. Effectiveness of application of the method are improved for the case of large ordinal numbers of the eigenvalues. As example the eigenvalues of a perturbed Laplace operator are calculated.
@article{VCHGU_2008_10_a4,
     author = {I. I. Kinzina},
     title = {The finding of the eigenvalues of perturbed discrete operators},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {34--43},
     publisher = {mathdoc},
     number = {10},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a4/}
}
TY  - JOUR
AU  - I. I. Kinzina
TI  - The finding of the eigenvalues of perturbed discrete operators
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 34
EP  - 43
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a4/
LA  - ru
ID  - VCHGU_2008_10_a4
ER  - 
%0 Journal Article
%A I. I. Kinzina
%T The finding of the eigenvalues of perturbed discrete operators
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 34-43
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a4/
%G ru
%F VCHGU_2008_10_a4
I. I. Kinzina. The finding of the eigenvalues of perturbed discrete operators. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 34-43. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a4/