The finding of the eigenvalues of perturbed discrete operators
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 34-43
Voir la notice de l'article provenant de la source Math-Net.Ru
The method of regularized tracks for the finding of the eigenvalues of a perturbed
discrete operator is generalized on the case when the eigenvalues of nonperturbed
operator have arbitrary multiplicity. Effectiveness of application of the method are
improved for the case of large ordinal numbers of the eigenvalues. As example the
eigenvalues of a perturbed Laplace operator are calculated.
@article{VCHGU_2008_10_a4,
author = {I. I. Kinzina},
title = {The finding of the eigenvalues of perturbed discrete operators},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {34--43},
publisher = {mathdoc},
number = {10},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a4/}
}
TY - JOUR AU - I. I. Kinzina TI - The finding of the eigenvalues of perturbed discrete operators JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2008 SP - 34 EP - 43 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a4/ LA - ru ID - VCHGU_2008_10_a4 ER -
%0 Journal Article %A I. I. Kinzina %T The finding of the eigenvalues of perturbed discrete operators %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2008 %P 34-43 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a4/ %G ru %F VCHGU_2008_10_a4
I. I. Kinzina. The finding of the eigenvalues of perturbed discrete operators. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 34-43. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a4/