The finding of the eigenvalues of perturbed discrete operators
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 34-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of regularized tracks for the finding of the eigenvalues of a perturbed discrete operator is generalized on the case when the eigenvalues of nonperturbed operator have arbitrary multiplicity. Effectiveness of application of the method are improved for the case of large ordinal numbers of the eigenvalues. As example the eigenvalues of a perturbed Laplace operator are calculated.
@article{VCHGU_2008_10_a4,
     author = {I. I. Kinzina},
     title = {The finding of the eigenvalues of perturbed discrete operators},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {34--43},
     year = {2008},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a4/}
}
TY  - JOUR
AU  - I. I. Kinzina
TI  - The finding of the eigenvalues of perturbed discrete operators
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 34
EP  - 43
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a4/
LA  - ru
ID  - VCHGU_2008_10_a4
ER  - 
%0 Journal Article
%A I. I. Kinzina
%T The finding of the eigenvalues of perturbed discrete operators
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 34-43
%N 10
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a4/
%G ru
%F VCHGU_2008_10_a4
I. I. Kinzina. The finding of the eigenvalues of perturbed discrete operators. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 34-43. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a4/

[1] I. M. Gelfand, B. M. Levitan, “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, DAN SSSR, 88:4 (1953), 593–596

[2] V. A. Sadovnichii, V. E. Podolskii, “O vychislenii pervykh sobstvennykh znachenii operatora Shturma—Liuvillya”, Dokl. RAN, 346:2 (1996), 162–164 | MR

[3] A. A. Dorodnitsyn, “Asimptoticheskie zakony raspredeleniya sobstvennykh znachenii dlya nekotorykh vidov differentsialnykh uravnenii vtorogo poryadka”, Uspekhi mat. nauk, 7:6 (1952), 3–96 | MR

[4] L. A. Dikii, “Novyi sposob priblizhennogo vychisleniya sobstvennykh chisel zadachi Shturma — Liuvillya”, DAN SSSR, 116:1 (1957), 12–14 | MR

[5] S. A. Shkarin, “O sposobe Gelfanda — Dikogo vychisleniya pervykh sobstvennykh chisel operatora Shturma — Liuvillya”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1996, no. 1, 39—44

[6] V. A. Sadovnichii, V. V. Dubrovskii, “Zamechanie ob odnom novom metode vychisleniya sobstvennykh znachenii i sobstvennykh funktsii diskretnykh operatorov”, Tr. seminara im. I. G. Petrovskogo, no. 17, MGU, M., 244—248

[7] S. I. Kadchenko, “Novyi metod vychisleniya pervykh sobstvennykh chisel diskretnykh nesamosopryazhennykh operatorov”, Uravneniya sobolevskogo tipa, 2002, 42—59, Chelyab. gos. un-t, Chelyabinsk | MR

[8] V. A. Sadovnichii, Teoriya operatorov, Vyssh. shk., M., 1999, 368 pp. | MR