On the asymptotic behavior of the solution of the second order linear differential equation
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 30-33

Voir la notice de l'article provenant de la source Math-Net.Ru

In work the problem of finding of the decision of one of kinds of the differential equation of the second order is considered. In this equation maximum wide assumption concerning factor of the equation that is the sum of a polynomial and almost periodic function of some kind is made. With the help of so-called method VKBJ it is constructed formal asymptotic decomposition of the decision that according to A. M. Iljin’s theorem is also the present decomposition.
@article{VCHGU_2008_10_a3,
     author = {A. A. Ershov},
     title = {On the asymptotic behavior of the solution of the second order linear differential equation},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {30--33},
     publisher = {mathdoc},
     number = {10},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a3/}
}
TY  - JOUR
AU  - A. A. Ershov
TI  - On the asymptotic behavior of the solution of the second order linear differential equation
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 30
EP  - 33
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a3/
LA  - ru
ID  - VCHGU_2008_10_a3
ER  - 
%0 Journal Article
%A A. A. Ershov
%T On the asymptotic behavior of the solution of the second order linear differential equation
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 30-33
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a3/
%G ru
%F VCHGU_2008_10_a3
A. A. Ershov. On the asymptotic behavior of the solution of the second order linear differential equation. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 30-33. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a3/