On the asymptotic behavior of the solution of the second order linear differential equation
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 30-33
Cet article a éte moissonné depuis la source Math-Net.Ru
In work the problem of finding of the decision of one of kinds of the differential equation of the second order is considered. In this equation maximum wide assumption concerning factor of the equation that is the sum of a polynomial and almost periodic function of some kind is made. With the help of so-called method VKBJ it is constructed formal asymptotic decomposition of the decision that according to A. M. Iljin’s theorem is also the present decomposition.
@article{VCHGU_2008_10_a3,
author = {A. A. Ershov},
title = {On the asymptotic behavior of the solution of the second order linear differential equation},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {30--33},
year = {2008},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a3/}
}
TY - JOUR AU - A. A. Ershov TI - On the asymptotic behavior of the solution of the second order linear differential equation JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2008 SP - 30 EP - 33 IS - 10 UR - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a3/ LA - ru ID - VCHGU_2008_10_a3 ER -
%0 Journal Article %A A. A. Ershov %T On the asymptotic behavior of the solution of the second order linear differential equation %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2008 %P 30-33 %N 10 %U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a3/ %G ru %F VCHGU_2008_10_a3
A. A. Ershov. On the asymptotic behavior of the solution of the second order linear differential equation. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 30-33. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a3/
[1] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR
[2] A. M. Ilin, Asimptoticheskie metody v analize, Chelyab. gos. un-t, Chelyabinsk, 2007