Differential equations for Bessel-type functions
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 25-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The interrelation between analytic functions of special form and linear ordinary differential equations with variable coefficients having this functions as solution is established. This result applied to the finding of equations corresponding to generalized Bessel functions that are utilized for the proof of generalized Phillips formula of the inverse Laplace transformation.
@article{VCHGU_2008_10_a2,
     author = {P. N. Davydov},
     title = {Differential equations for {Bessel-type} functions},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {25--29},
     year = {2008},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a2/}
}
TY  - JOUR
AU  - P. N. Davydov
TI  - Differential equations for Bessel-type functions
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 25
EP  - 29
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a2/
LA  - ru
ID  - VCHGU_2008_10_a2
ER  - 
%0 Journal Article
%A P. N. Davydov
%T Differential equations for Bessel-type functions
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 25-29
%N 10
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a2/
%G ru
%F VCHGU_2008_10_a2
P. N. Davydov. Differential equations for Bessel-type functions. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 25-29. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a2/

[1] R. S. Phillips, “An inversion formula for Laplace transforms and semi-groups of linear operators”, Ann. of Math., 59 (1954), 325—356 | DOI | MR

[2] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, Inostr. lit., M., 1962 | MR

[3] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York–Basel–Hong Kong, 1999 | MR

[4] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003 | MR

[5] V. E. Fedorov, “Obobschenie teoremy Khille — Iosidy na sluchai vyrozhdennykh polugrupp v lokalno vypuklykh prostranstvakh”, Sib. mat. zhurn., 46:2 (2005), 426—448 | MR

[6] V. E. Fedorov, “Ob odnom obobschenii formuly Fillipsa”, Matematika. Mekhanika. Informatika : materialy Vseros. nauch. konf., Chelyab. gos. un-t, Chelyabinsk, 2007, 211—219

[7] G. N. Vatson, Teoriya besselevykh funktsii, Inostr. lit., M., 1949

[8] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR