Appearance of the convection in a horizontal plane layer of a porous medium
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 130-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of equillibrium stability of a heated from below plane horizontal layer of porous medium with a liquid having a limited thermal conductivity of forming solids are resolved analitically. It is shown that if the thermal conductivity decreases then the equillibrium stability goes down monotonously and the length of running critical perturbations grows up.
@article{VCHGU_2008_10_a17,
     author = {O. N. Dementiev and D. V. Lyubimov},
     title = {Appearance of the convection in a horizontal plane layer of a porous medium},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {130--135},
     year = {2008},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a17/}
}
TY  - JOUR
AU  - O. N. Dementiev
AU  - D. V. Lyubimov
TI  - Appearance of the convection in a horizontal plane layer of a porous medium
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 130
EP  - 135
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a17/
LA  - ru
ID  - VCHGU_2008_10_a17
ER  - 
%0 Journal Article
%A O. N. Dementiev
%A D. V. Lyubimov
%T Appearance of the convection in a horizontal plane layer of a porous medium
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 130-135
%N 10
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a17/
%G ru
%F VCHGU_2008_10_a17
O. N. Dementiev; D. V. Lyubimov. Appearance of the convection in a horizontal plane layer of a porous medium. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 130-135. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a17/

[1] Y. Katto, T. Masuoka, “Criterion for the onset of convective flow in a fluid in a porous media”, Intern. J. Heat Mass Transfer, 10:3 (1967), 297–309 | DOI

[2] E. R. Lapwood, “Convection of a fluid in a porous medium”, Proc. Camb. Phil. Soc., 44:4 (1948), 502–521 | DOI | MR

[3] P. P. Zolotarev, “Usloviya vozniknoveniya teplovoi konvektsii v poristom plaste”, Inzhener. zhurn., 5:2 (1965), 236

[4] D. T. J. Hurle, E. Jakeman, E. R. Pike, “Significance of the Soret effect in the Rayleigh-Jeffrey's problem”, Proc. Roy. Soc., A296 (1967), N1447

[5] J. L. Beck, “Convection in a box of porous material saturated with fluid”, Phys. Fluids, 15 (1972), 1377–1383 | DOI

[6] G. Z. Gershuni, E. M. Zhukhovitskii, M. G. Semakin, “O konvektivnoi neustoichivosti zhidkosti v gorizontalnom sloe, razdelyayuschem massivy raznoi teploprovodnosti”, Uchen. zap. Perm. un-ta. Gidrodinamika, 1971, no. 3 (248), 18–28

[7] D. V. Lyubimov, “O konvektivnykh dvizheniyakh v poristoi srede, podogrevaemoi snizu”, PMTF, 1975, no. 2, 131–137

[8] A. F. Glukhov, D. V. Lyubimov, G. F. Putin, “Konvektivnye dvizheniya v poristoi srede vblizi poroga neustoichivosti”, Dokl. AN SSSR, 236:3 (1978), 549–551

[9] D. V. Lyubimov, Dynamical properties of thermal convection in porous medium. Instabilities in Multyphase Flows, Plenum Publishing Company, 1993 | MR

[10] D. A. Bratsun, D. V. Lyubimov, B. Roux, “Co—symmetry breakdown in problems of thermal convection in porous medium”, Physica D., 82 (1995), 398–417 | DOI | MR

[11] M. de la Torre Juarez, F. H. Busse, “Stability of two—dimensional convection in a fluid—saturated porous medium”, J. Fluid Mech., 292 (1995), 305—323 | DOI | MR