Some properties of the extended complexity of 3-dimensional manifolds
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 114-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some properties of the extended complexity of 3-dimensional manifolds are researched, particularly the additivity of the relatively connected and the boundary connected summation and the property of the finiteness.
@article{VCHGU_2008_10_a15,
     author = {O. N. Shatnykh},
     title = {Some properties of the extended complexity of 3-dimensional manifolds},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {114--120},
     year = {2008},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a15/}
}
TY  - JOUR
AU  - O. N. Shatnykh
TI  - Some properties of the extended complexity of 3-dimensional manifolds
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 114
EP  - 120
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a15/
LA  - ru
ID  - VCHGU_2008_10_a15
ER  - 
%0 Journal Article
%A O. N. Shatnykh
%T Some properties of the extended complexity of 3-dimensional manifolds
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 114-120
%N 10
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a15/
%G ru
%F VCHGU_2008_10_a15
O. N. Shatnykh. Some properties of the extended complexity of 3-dimensional manifolds. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 114-120. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a15/

[1] S. Matveev, Algorithmic Topology and Classification of 3-Manifolds, Springer-Verlag, Berlin ; Heidelberg, 2003 | MR

[2] C. Hog-Angeloni, S. Matveev, “Roots of 3-manifolds and cobordisms”, accepted for publication, Geometry, 2007 | MR

[3] O. N. Shatnykh, “Rasshirenie slozhnosti trekhmernykh mnogoobrazii”, Problemy teoreticheskoi i prikladnoi matematiki: tr. 38-i region. molodezh. konf., 38-i region. molodezh. konf., Izd-vo UrO RAN, Ekaterinburg, 2007, 80–84