Some properties of the extended complexity of 3-dimensional manifolds
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 114-120
Cet article a éte moissonné depuis la source Math-Net.Ru
Some properties of the extended complexity of 3-dimensional manifolds are researched, particularly the additivity of the relatively connected and the boundary connected summation and the property of the finiteness.
@article{VCHGU_2008_10_a15,
author = {O. N. Shatnykh},
title = {Some properties of the extended complexity of 3-dimensional manifolds},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {114--120},
year = {2008},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a15/}
}
TY - JOUR AU - O. N. Shatnykh TI - Some properties of the extended complexity of 3-dimensional manifolds JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2008 SP - 114 EP - 120 IS - 10 UR - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a15/ LA - ru ID - VCHGU_2008_10_a15 ER -
%0 Journal Article %A O. N. Shatnykh %T Some properties of the extended complexity of 3-dimensional manifolds %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 2008 %P 114-120 %N 10 %U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a15/ %G ru %F VCHGU_2008_10_a15
O. N. Shatnykh. Some properties of the extended complexity of 3-dimensional manifolds. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 114-120. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a15/
[1] S. Matveev, Algorithmic Topology and Classification of 3-Manifolds, Springer-Verlag, Berlin ; Heidelberg, 2003 | MR
[2] C. Hog-Angeloni, S. Matveev, “Roots of 3-manifolds and cobordisms”, accepted for publication, Geometry, 2007 | MR
[3] O. N. Shatnykh, “Rasshirenie slozhnosti trekhmernykh mnogoobrazii”, Problemy teoreticheskoi i prikladnoi matematiki: tr. 38-i region. molodezh. konf., 38-i region. molodezh. konf., Izd-vo UrO RAN, Ekaterinburg, 2007, 80–84