Graphic presentations on the lens spaces minimal $DS$-diagrams
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 108-113

Voir la notice de l'article provenant de la source Math-Net.Ru

$DS$-diagram is a three-valent graph on a two-sphere with an identification which glues vertices in fours, edges in threes, faces in twos. Any compact closed 3-manifold can be constructed from the 3-ball by factorizing its boundary according to an appropriate $DS$-diagram. The $DS$-diagrams of lens spaces with minimal number of faces among all known $DS$-diagrams of these manifolds are considered in the work. A few methods of constructing these diagrams as plane graphs with straight edges are described. Advantages of each method are discussed.
@article{VCHGU_2008_10_a14,
     author = {M. A. Ovchinnikov},
     title = {Graphic presentations on the lens spaces minimal $DS$-diagrams},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {108--113},
     publisher = {mathdoc},
     number = {10},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a14/}
}
TY  - JOUR
AU  - M. A. Ovchinnikov
TI  - Graphic presentations on the lens spaces minimal $DS$-diagrams
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 108
EP  - 113
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a14/
LA  - ru
ID  - VCHGU_2008_10_a14
ER  - 
%0 Journal Article
%A M. A. Ovchinnikov
%T Graphic presentations on the lens spaces minimal $DS$-diagrams
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 108-113
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a14/
%G ru
%F VCHGU_2008_10_a14
M. A. Ovchinnikov. Graphic presentations on the lens spaces minimal $DS$-diagrams. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 108-113. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a14/