Graph manifolds genus 2
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 94-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove one necessary condition for totally orientable graph manifolds genus 2. More precisely, we describe such the set of graphs, that any totally orientable graph manifold genus two is constructed on this graph.
@article{VCHGU_2008_10_a12,
     author = {F. G. Korablev},
     title = {Graph manifolds genus 2},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {94--100},
     year = {2008},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a12/}
}
TY  - JOUR
AU  - F. G. Korablev
TI  - Graph manifolds genus 2
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 94
EP  - 100
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a12/
LA  - ru
ID  - VCHGU_2008_10_a12
ER  - 
%0 Journal Article
%A F. G. Korablev
%T Graph manifolds genus 2
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 94-100
%N 10
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a12/
%G ru
%F VCHGU_2008_10_a12
F. G. Korablev. Graph manifolds genus 2. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 94-100. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a12/

[1] J. Schultens, “Heegaard splittings of graph manifolds”, Geometry and Topology, 8 (2005), 831–876 | DOI | MR

[2] J. Schultens, R. Weidmann, On the Geometric and Algebraic Rank of Graph Manifolds, Preprint, Davis, 2004 | MR

[3] M. Sharlemann, A. Thompson, “Thin position for 3-manifolds”, AMS Contemporary Math., 164 (1994), 231—238 | DOI | MR