Distributive grouppoids for knots in projective space
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 89-93
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article the approach of constructing of a distributive knot in the case of projective space is suggested. The fact of knot characterization by his grouppoid is proved. Knot grouppoid works for construction of other invariants of knot.
@article{VCHGU_2008_10_a11,
author = {D. V. Gorkovets},
title = {Distributive grouppoids for knots in projective space},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {89--93},
year = {2008},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a11/}
}
TY - JOUR AU - D. V. Gorkovets TI - Distributive grouppoids for knots in projective space JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2008 SP - 89 EP - 93 IS - 10 UR - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a11/ LA - ru ID - VCHGU_2008_10_a11 ER -
D. V. Gorkovets. Distributive grouppoids for knots in projective space. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 89-93. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a11/
[1] S. V. Matveev, “Distributivnye gruppoidy i uzly v teorii uzlov”, Mat. sb., 119:1 (1982), 78–88 | MR
[2] D. Joyce, “A classifying invariant of knots, the knot quandle”, J. Pure Appl. Algebra, 23 (1982), 37–65 | DOI | MR
[3] Yu. V. Drobotukhina, “Analog polinoma Dzhonsa dlya zatseplenii v $\mathbb{R}P^3$ i obobschenie teoremy Kauffmana — Murasugi”, Algebra i analiz, 2:3 (1991), 613–630 | MR
[4] S. V. Matveev, A. T. Fomenko, Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991 | MR