Distributive grouppoids for knots in projective space
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 89-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article the approach of constructing of a distributive knot in the case of projective space is suggested. The fact of knot characterization by his grouppoid is proved. Knot grouppoid works for construction of other invariants of knot.
@article{VCHGU_2008_10_a11,
     author = {D. V. Gorkovets},
     title = {Distributive grouppoids for knots in projective space},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {89--93},
     year = {2008},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a11/}
}
TY  - JOUR
AU  - D. V. Gorkovets
TI  - Distributive grouppoids for knots in projective space
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 89
EP  - 93
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a11/
LA  - ru
ID  - VCHGU_2008_10_a11
ER  - 
%0 Journal Article
%A D. V. Gorkovets
%T Distributive grouppoids for knots in projective space
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 89-93
%N 10
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a11/
%G ru
%F VCHGU_2008_10_a11
D. V. Gorkovets. Distributive grouppoids for knots in projective space. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 89-93. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a11/

[1] S. V. Matveev, “Distributivnye gruppoidy i uzly v teorii uzlov”, Mat. sb., 119:1 (1982), 78–88 | MR

[2] D. Joyce, “A classifying invariant of knots, the knot quandle”, J. Pure Appl. Algebra, 23 (1982), 37–65 | DOI | MR

[3] Yu. V. Drobotukhina, “Analog polinoma Dzhonsa dlya zatseplenii v $\mathbb{R}P^3$ i obobschenie teoremy Kauffmana — Murasugi”, Algebra i analiz, 2:3 (1991), 613–630 | MR

[4] S. V. Matveev, A. T. Fomenko, Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, Izd-vo MGU, M., 1991 | MR