Dynamical system for BCF model describing crystal surface growth
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 75-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper treats the initial-boundary value problem for a nonlinear parabolic equation of forth order which was presented by Johnson — Orme — Hunt — Graff — Sudijono — Sauder — Orr [1] in order to describe the interesting phenomena of crystal surface growth under molecular beam epitaxy (MBE). First we construct unique local solutions in a suitable function space by applying the techniques of abstract parabolic evolution equations. Second we establish a priori estimates to obtain the global existence of solutions. Our goal is then to construct a dynamical system determined from the initial-boundary value problem of the model equation.
Keywords: Dynamical system, BCF model, semilinear parabolic equation, a priori estimate.
@article{VCHGU_2008_10_a10,
     author = {H. Fujimura and A. Yagi},
     title = {Dynamical system for {BCF} model describing crystal surface growth},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {75--88},
     year = {2008},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a10/}
}
TY  - JOUR
AU  - H. Fujimura
AU  - A. Yagi
TI  - Dynamical system for BCF model describing crystal surface growth
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 75
EP  - 88
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a10/
LA  - en
ID  - VCHGU_2008_10_a10
ER  - 
%0 Journal Article
%A H. Fujimura
%A A. Yagi
%T Dynamical system for BCF model describing crystal surface growth
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 75-88
%N 10
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a10/
%G en
%F VCHGU_2008_10_a10
H. Fujimura; A. Yagi. Dynamical system for BCF model describing crystal surface growth. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 75-88. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a10/

[1] M. D. Johnson [et al.], Stable and unstable growth in molecular beam epitaxy, 1994, Phys. Rev. Lett., 72, 116–119 pp.

[2] M. Uwaha, Study on Mechanism of Crystal Growth, Kyoritsu Publisher, Tokyo, 2002 (In Japanese)

[3] W. K. Burton, N. Cabrera, F. C. Frank, “The growth of crystals and the equilibrium structure of their surfaces”, Phil. Trans. Royal Soc., 243 (1951), 299–358, London | DOI | MR

[4] A. W. Hunt [et al.], “Instabilities in MBE growth”, Europhys. Lett., 27 (1994), 611–616 | DOI

[5] O. Pierre-Louis [et al.], “New nonlinear evolution equation for steps during molecular beam epitaxy on vicinal surfaces”, Phys. Rev. Lett., 80 (1998) | DOI

[6] M. Rost, J. Krug, “Coarsening of surface structures in unstable epitaxial growth”, Phys. Rev. Lett. E., 55 (1997), 3952–3957 | DOI

[7] M. Rost, P. Smilauer, J. Krug, “Unstable epitaxy on vicinal surfaces”, Surface Science, 369 (1996), 393–402 | DOI

[8] W. W. Mullins, “Theory of thermal grooving”, J. Applied Phys., 28 (1957), 333–339 | DOI

[9] G. Ehrlich, F. G. Hudda, “Atomic view of surface self-diffusion : tungsten on tungsten”, J. Chem. Phys., 44 (1966), 1039–1049 | DOI

[10] R. L. Schwoebel, E. J. Shipsey, “Step motion on crystal surfaces”, J. Appl. Phys., 37 (1966), 3682—3686 | DOI

[11] AMS, Providence, 1971 | MR

[12] H. Tanabe, Evolution Equations, Pitman, London, 1979 | MR

[13] K. Osaki, A. Yagi, “Global existence for a chemotaxis-growth system in $\mathbb R^2$”, Adv. Math. Sci. Appl., 12 (2002), 587—606 | MR

[14] A. V. Babin, M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992 | MR

[15] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer-Verlag, Berlin, 1997 | MR

[16] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985 | MR

[17] H. Triebel, Interpolation Theory, Function spaces, Differential Operators, North-Holland, Amsterdam, 1978 | MR

[18] R. Dautray, J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, v. 2, Springer-Verlag, Berlin, 1988 | MR

[19] A. Yagi, “$H_\infty$ functional calculus and characterization of domains of fractional powers”, Proc. 17-th Conference on \flqq Operator Theory and Applications\frqq , 17-th Conference on \flqq Operator Theory and Applications\frqq , Birkhäuser, Basel (to appear)

[20] H. Brezis, Analyse fonctionnell, théorie et applications, Masson, Paris, 1983 | MR