Some remarks on the operator of diagonal map and on multifunctional analytic spaces
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 19-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article has nature of announcement of new results. We consider the action of the operator of diagonalization and we assert the boundedness of this operator from one holomorphic space to another one. Assertions in the bidisc extend previously known onedimensional estimates. Also new sharp theorems on diagonal map are given. These results essentially compliment previously known subtle results on diagonal map in polydisc. Some estimates for multifunctional analytic spaces in higher dimension are also given. These inequalities were previously known in the case of unit disc.
Keywords: holomorphic spaces, diagonal map.
@article{VCHGU_2008_10_a1,
     author = {R. F. Shamoyan},
     title = {Some remarks on the operator of diagonal map and on multifunctional analytic spaces},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {19--24},
     year = {2008},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a1/}
}
TY  - JOUR
AU  - R. F. Shamoyan
TI  - Some remarks on the operator of diagonal map and on multifunctional analytic spaces
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 19
EP  - 24
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a1/
LA  - en
ID  - VCHGU_2008_10_a1
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%T Some remarks on the operator of diagonal map and on multifunctional analytic spaces
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 19-24
%N 10
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a1/
%G en
%F VCHGU_2008_10_a1
R. F. Shamoyan. Some remarks on the operator of diagonal map and on multifunctional analytic spaces. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 19-24. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a1/

[1] W. Rudin, Function theory in polydisc, Benjamin, New York, 1969 | MR

[2] P. L. Duren, A. L. Shields, “Restriction of $H^p$ functions on the diagonal of the polydisc”, Duke Math. J., 42 (1975), 751—753 | DOI | MR

[3] F. Shamoyan, A. Djrbashian, Topics in the theory of $A^p_\alpha$ spaces, Teubner, Leipzig, 1988 | MR

[4] G. Ren, J. Shi, “The diagonal mapping theorem in mixed norm spaces”, Studia Math., 163 (2004), 103—117 | DOI | MR

[5] L. Grafakos, Classical and modern Fourier Analysis, Pearson/Prentice Hall, New Jersey, 2004 | MR

[6] R. Zhao, New Criteria for Carleson measures, Preprint, University of Brockport, New York, 2006

[7] K. Zhu, Function theory in the unit ball, Springer Verlag, New York, 2005 | MR

[8] I. Verbitsky, “Multipliers in spaces with \flqq fractional\frqq norm and inner functions”, Siberian Math. J., 26:2 (1985), 51—72 | MR

[9] J. Fabrega, J. Ortega, “Hardy's inequality and embeddings in holomorphic Lizorkin—Triebel spaces”, Illinois Math. J., 43 (1993), 733—751 | MR