Divegrent sequences in Banach spaces
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 5-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of construction of the class of the sequences not containing pseudo-converging subsequences (summable by arithmetic means) is developed. The example of a Banach space of sequences with some topology is constructed that containing pseudo-converging, divergent in the sence of norm sequences, but all not containing pseudo-converging subsequences sequences diverges.
@article{VCHGU_2008_10_a0,
     author = {S. A. Rudakov and T. N. Rudakova},
     title = {Divegrent sequences in {Banach} spaces},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {5--18},
     year = {2008},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a0/}
}
TY  - JOUR
AU  - S. A. Rudakov
AU  - T. N. Rudakova
TI  - Divegrent sequences in Banach spaces
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 2008
SP  - 5
EP  - 18
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a0/
LA  - ru
ID  - VCHGU_2008_10_a0
ER  - 
%0 Journal Article
%A S. A. Rudakov
%A T. N. Rudakova
%T Divegrent sequences in Banach spaces
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 2008
%P 5-18
%N 10
%U http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a0/
%G ru
%F VCHGU_2008_10_a0
S. A. Rudakov; T. N. Rudakova. Divegrent sequences in Banach spaces. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 10 (2008), pp. 5-18. http://geodesic.mathdoc.fr/item/VCHGU_2008_10_a0/

[1] S. Banach, S. Saks, “Sur la convergence fortes dans les champs $L_p$”, Studia Math., 2 (1930), 51—57 | DOI

[2] T. Schreier, “Ein Gegenbeispiel zur theorie der scvhwachen konvergenz”, Studia Math., 2 (1930), 58—62 | DOI

[3] S. Kakutani, “Weak convergence in uniformly convex spaces”, Tohoku Math. J., 45 (1938), 188—193

[4] V. Klee, “Summability in $l(p_1, p_2,\dots)$ spaces”, Studia Math., 25 (1965), 277—280 | DOI | MR

[5] I. Singer, “A remark on reflexivity and summibility”, Studia Math., 26 (1965), 113—114 | DOI | MR

[6] A. Brunel., L. Sucheston, “On B-convex Banach Spaces”, Math. Syst. Theory, 7:4 (1974), 294—299 | MR

[7] S. A. Rudakov, “Summiruemost slabo skhodyaschikhsya posledovatelnostei v banakhovykh prostranstvakh”, Mat. zap. Ural. un-ta, 9:2 (1975), 103—110

[8] S. A. Rudakov, “Odin vid slabo skhodyaschikhsya posledovatelnostei i ikh summirovanie v banakhovykh prostranstvakh”, Izv. vuzov. Matematika, 12 (1977), 85—91

[9] S. A. Rudakov, “Suschestvovanie psevdoskhodyaschikhsya podposledovatelnostei i summirovanie psevdoskhodyaschikhsya posledovatelnostei v banakhovykh prostranstvakh”, Mat. zametki, 28:1 (1980), 91—102

[10] R. Kuk, Beskonechnye matritsy i prostranstva posledovatelnostei, Fizmatgiz, M., 1960

[11] G. G. Lorentz, “A contributions to the theory of divergent sequences”, Acta Math., 80 (1948), 167—190 | DOI | MR

[12] L. A. Lyusternik, V. I. Sobolev, Kratkii kurs funktsionalnogo analiza, Nauka, M., 1982 | MR

[13] A. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz v normirovannykh prostranstvakh, Nauka, M., 1959 | MR