@article{VCHGU_2003_8_a1,
author = {E. H. Al'brekht},
title = {{\CYRO}{\cyrb} {\cyri}{\cyrd}{\cyre}{\cyrn}{\cyrt}{\cyri}{\cyrf}{\cyri}{\cyrk}{\cyra}{\cyrc}{\cyri}{\cyri} {\cyrm}{\cyra}{\cyrt}{\cyre}{\cyrm}{\cyra}{\cyrt}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrh} {\cyrm}{\cyro}{\cyrd}{\cyre}{\cyrl}{\cyre}{\cyrishrt} {\cyrn}{\cyre}{\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyrery}{\cyrh} {\cyrp}{\cyrr}{\cyro}{\cyrc}{\cyre}{\cyrs}{\cyrs}{\cyro}{\cyrv}},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {13--26},
year = {2003},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2003_8_a1/}
}
TY - JOUR AU - E. H. Al'brekht TI - Об идентификации математических моделей нелинейных процессов JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 2003 SP - 13 EP - 26 IS - 8 UR - http://geodesic.mathdoc.fr/item/VCHGU_2003_8_a1/ LA - ru ID - VCHGU_2003_8_a1 ER -
E. H. Al'brekht. Об идентификации математических моделей нелинейных процессов. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 8 (2003), pp. 13-26. http://geodesic.mathdoc.fr/item/VCHGU_2003_8_a1/
[1] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[2] Albrekht E.G., “Ob upravlenii dvizheniem nelineinykh sistem”, Tr. Vtorogo Bolgarskogo natsionalnogo kongressa po teoreticheskoi i prikladnoi mekhanike, v. 1, Sofiya, 1975, 522–526
[3] Albrekht E.G., “Metodika postroeniya i identifikatsii matematicheskikh modelei makroekonomicheskikh protsessov”, Issledovano v Rossii: Elektron. zhurn., 2002, no. 5, 54–86 http://zhurnal.ape.relarn.ru/articles/2002/005.pdf
[4] Albrekht E.G., Bystrai G.P., “O dinamicheskikh modelyakh evolyutsii nekoto- rykh makroekonomicheskikh protsessov”, Issledovanie federalizma v Rossii: mezhdistsiplinarnyi podkhod, In-t filosofii i prava UrO RAN, Ekate- rinburg, 1999, 214–232
[5] Arutyunov A.V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR
[6] Berdyshev V.I., Petrak L.V., Approksimatsiya funktsii, szhatie chislovoi in- formatsii, prilozheniya, IMM UrO RAN, Ekaterinburg, 1999 | MR
[7] Berdyshev Yu.I., “O neobkhodimykh usloviyakh optimalnosti v odnoi zadache posledovatelnoi optimizatsii”, Negladkie zadachi optimizatsii i upravlenie, UrO AN SSSR, Sverdlovsk, 1988, 12–19
[8] Berdyshev Yu.I., Chentsov A.G., O nekotorykh zadachakh posledovatelnoi optimizatsii upravlyaemykh sistem, Dep. v VINITI,1982. # 109 – 83, 1982
[9] Berdyshev Yu.I., Chentsov A.G., “Optimizatsiya vzveshennogo kriteriya v odnoi zadache upravleniya”, Kibernetika, 1986, no. 1, 59–64 | Zbl
[10] Galiullin A.S., Obratnye zadachi dinamiki, Nauka, M., 1986 | MR
[11] Korotkii A.I., “Obratnye zadachi dinamiki upravlyaemykh sistem s rasprede- lennymi parametrami”, Izv. vuzov. Matematika, 1995, no. 11, 101–124 | MR
[12] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968 | MR
[13] Krutko P.D., Obratnye zadachi dinamiki upravlyaemykh sistem. Nelineinye modeli, Nauka,, M., 1988 | MR
[14] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR
[15] Osipov Yu.S., Kryazhimskii A.V., Inverse problem of ordinary dyfferential equa- tions: dynamical solutions, Gordon and Breach, London, 1995 | MR
[16] Pontryagin L.S., Boltyanskii V.G.,Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | MR