О регуляризуемости линейных
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 6 (2002), pp. 38-41
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{VCHGU_2002_6_a6,
author = {V. P. Tanana and L. D. Menikhes},
title = {{\CYRO} {\cyrr}{\cyre}{\cyrg}{\cyru}{\cyrl}{\cyrya}{\cyrr}{\cyri}{\cyrz}{\cyru}{\cyre}{\cyrm}{\cyro}{\cyrs}{\cyrt}{\cyri} {\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyrery}{\cyrh}},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {38--41},
year = {2002},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_2002_6_a6/}
}
V. P. Tanana; L. D. Menikhes. О регуляризуемости линейных. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 6 (2002), pp. 38-41. http://geodesic.mathdoc.fr/item/VCHGU_2002_6_a6/
[1] Vinokurov V.A., “O ponyatii regulyarizuemosti razryvnykh otobrazhenii”, Zhurn. vychisl. matematiki i mat. fiziki, 11:5 (1971), 1097 – 2013
[2] Petunin Yu.I., Plichko A.N., Teoriya kharakteristik podprostranstv i ee prilozheniya, Vischa shk., Kiev, 1980
[3] Tanana V.P., “O reshenii integralnykh uravnenii Fredgolma pervogo roda v prostranstve C(0; 1)”, Mat. zap., 7:4 (1970), 83 – 90, Izd-vo UrGU, Sverdlovsk
[4] Menikhes L.D., “O regulyarizuemosti otobrazhenii, obratnykh k integralnym operatoram”, DAN SSSR, 241:2 (1978), 282 – 285 | MR | Zbl