@article{VCHGU_1999_4_a13,
author = {A. P. Oskolkov},
title = {{\CYRO} {\cyrn}{\cyre}{\cyrk}{\cyro}{\cyrt}{\cyro}{\cyrr}{\cyrery}{\cyrh} {\cyrp}{\cyrs}{\cyre}{\cyrv}{\cyrd}{\cyro}{\cyrp}{\cyra}{\cyrr}{\cyra}{\cyrb}{\cyro}{\cyrl}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrh} {\cyrs}{\cyri}{\cyrs}{\cyrt}{\cyre}{\cyrm}{\cyra}{\cyrh}},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {155--173},
year = {1999},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_1999_4_a13/}
}
A. P. Oskolkov. О некоторых псевдопараболических системах. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 4 (1999), pp. 155-173. http://geodesic.mathdoc.fr/item/VCHGU_1999_4_a13/
[1] Oskolkov A.P., “Ob odnoi nestatsionarnoi kvazilineinoi sisteme s malym parametrom, regulyarizuyuschei sistemu uravnenii Nave–Stoksa”, Problemy mat. analiza, 1973, no. 4, 78-87, Izd-vo Lenigr. un-ta | Zbl
[2] Oskolkov A.P., “O nekotorykh nestatsionarnykh lineinykh i kvazistatsionarnykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Zap. Nauchn. seminnarov LOMI, 59, 1976, 133–177 | Zbl
[3] Oskolkov A.P., “Nachalno-kraevye zadachi dlya uravnenii zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. MI AN SSSR, 179, 1988, 126-164
[4] Oskolkov A.P., “Nachalnye problemy dlya odnogo klassa nelineinykh operatornykh uravnenii, voznikayuschikh v teorii uravnenii tipa S.L.Soboleva”, Zap. nauchn. seminarov POMI, 198, 1991, 31–48 | Zbl
[5] Oskolkov A.P., “Nonlocalproblems for equations of Kelvin–Voight fluids”, Zap. nauchn. seminarov POMI, 197, 1992, 120–158 | MR | Zbl
[6] Sviridyuk G.A., Issledovanie polulineinykh uravnenii tipa Soboleva v banakhovykh prostranstvakh, Dis. ...d-ra fiz-mat nauk, Chelyabinsk, 1993, 213 pp.
[7] Vishik M.I., “Zadacha Koshi dlya uravnenii s operatornymi koeffitsientami, smeshannaya kraevaya zadacha dlya sistem differentsialnykh uravnenii i priblizhennyi metod ikh issledovaniya”, Mat. sb., 39:1 (1956), 51–148 | Zbl
[8] Showalter R.E., “Partial differential equations of Sobolev-Galpern type”, Pavific J. Math., 31 (1969), 787–794 | DOI | MR
[9] Showalter R.E., Ting T.W., “Pseudo-parabolic partial differential equations”, SIAM J. Math. Anal., 1 (1970), 1–26 | DOI | MR | Zbl
[10] Raevskii X., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978
[11] Oskolkov A.P., “O nekotorykh polulineinykh dissipativnykh sistemakh uravnenii s malym parametrom, voznikayuschikh pri chislennom reshenii uravnenii Nave - Stoksa, uravnenii zhidkostei Oldroita i zhidkostei Kelvina–Foigta”, Zap. nauchn. seminarov POMI, 202, 1992, 158–184
[12] Kotsiolis A.A., Oskolkov A.P., “The initial-boundary value problem with a free surface condition for the $\varepsilon$-approximations of the Navie–Stokes equation and same their regularizations”, Zap. nauchn. seminarov POMI, 205, 1993, 38–70 | MR
[13] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, 2, Nauka, M., 1970
[14] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981
[15] Brefort B., Ghidaglia J.M., Temam R., “Attractors for the penalized Navie–Stokes equations”, SIAM J. Math. Anal, 19:1 (1988), 1–21 | DOI | MR | Zbl
[16] Ladyzhenskaya O.A., Seregin G.A., “Ob odnom sposobe priblizhennogo resheniiya nachalno-kraevykh zadach dlya uravnenii Nave–Stoksa”, Zap. nauchn. seminarov POMI, 197, 1992, 87–119 | Zbl
[17] Ghidaglia J.M., Temam R., “Long time behavior for party dissipative equations the slightly compressible 2d-Navie–Stokes equation”, Asymptotical Anal., 1 (1988), 23–49 | MR | Zbl
[18] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1977
[19] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1954 | MR
[20] Oskolkov A.P., “Gladkie skhodyaschiesya $\varepsilon$-approksimatsii pervoi kraevoi zadachi dlya uravnenii zhidkostei Oldroita i zhidkostei Kelvina-Foigta”, Zap. nauchn. seminarov POMI, 215, 1994, 246–255
[21] Oskolkov A.P., “Gladkie skhodyaschiesya $\varepsilon$-approksimatsii nachalno-kraevykh zadach dlya modifitsirovannykh uravnenii Nave–Stoksa”, Zap. nauchn. seminarov POMI, 221, 1995, 117–153
[22] Oskolkov A.P., “Gladkie skhodyaschiesya $\varepsilon$-approksimatsii pervoi kraevoi zadachi dlya uravnenii zhidkostei Kelvina–Foigta”, Zap. nauchn. seminarov POMI, 225, 1994, 109–133