Относительно спектральная теорема
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 3 (1996), pp. 62-66
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{VCHGU_1996_3_a7,
author = {A. V. Keller},
title = {{\CYRO}{\cyrt}{\cyrn}{\cyro}{\cyrs}{\cyri}{\cyrt}{\cyre}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro} {\cyrs}{\cyrp}{\cyre}{\cyrk}{\cyrt}{\cyrr}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyra}{\cyrya} {\cyrt}{\cyre}{\cyro}{\cyrr}{\cyre}{\cyrm}{\cyra}},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {62--66},
year = {1996},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_1996_3_a7/}
}
A. V. Keller. Относительно спектральная теорема. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 3 (1996), pp. 62-66. http://geodesic.mathdoc.fr/item/VCHGU_1996_3_a7/
[1] Sviridyuk G.A., “K obschei teorii polugrupp operatorov”, UMN, 49:4 (1994), 47–74 | MR | Zbl
[2] Sviridyuk G.A., “Fazovye prostranstva polulineinykh uravnenii tipa Soboleva s otnositelno silno sektorialnym operatorom”, Algebra i analiz, 6:2 (1994), 216–237
[3] Riss F., Sekelvafi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979
[4] Sviridyuk G.A., Keller A. V., “Invariantnye prostranstva lineinykh uravnenii tipa Soboleva s otnositelno $p$-sektorialnym operatorom”, Algoritmicheskii i chislennyi analiz nekorrektnykh zadach, Tez. dokl. Vseros. nauch. konf., Ekaterinburg, 1995, 111
[5] Sviridyuk G.A., “Polulineinye uravneniya tipa Soboleva s otnositelno sektorial'nym operatorom”, DAN, 329:3 (1993), 274–277 | MR | Zbl