@article{VCHGU_1996_3_a19,
author = {M. V. Sokolov},
title = {{\CYRI}{\cyrn}{\cyrv}{\cyra}{\cyrr}{\cyri}{\cyra}{\cyrn}{\cyrt} {{\CYRT}{\cyru}{\cyrr}{\cyra}{\cyre}{\cyrv}{\cyra}-{\CYRV}{\cyri}{\cyrr}{\cyro}} {\cyrd}{\cyrl}{\cyrya} {\cyrt}{\cyrr}{\cyryo}{\cyrh}{\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyrery}{\cyrh} {\cyrm}{\cyrn}{\cyro}{\cyrg}{\cyro}{\cyro}{\cyrb}{\cyrr}{\cyra}{\cyrz}{\cyri}{\cyrishrt} {\cyrya}{\cyrv}{\cyrl}{\cyrya}{\cyre}{\cyrt}{\cyrs}{\cyrya} {\cyrs}{\cyru}{\cyrm}{\cyrm}{\cyro}{\cyrishrt} {\cyrt}{\cyrr}{\cyryo}{\cyrh} {\cyri}{\cyrn}{\cyrv}{\cyra}{\cyrr}{\cyri}{\cyra}{\cyrn}{\cyrt}{\cyro}{\cyrv}},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {154--162},
year = {1996},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_1996_3_a19/}
}
TY - JOUR AU - M. V. Sokolov TI - Инвариант Тураева-Виро для трёхмерных многообразий является суммой трёх инвариантов JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 1996 SP - 154 EP - 162 IS - 3 UR - http://geodesic.mathdoc.fr/item/VCHGU_1996_3_a19/ LA - ru ID - VCHGU_1996_3_a19 ER -
%0 Journal Article %A M. V. Sokolov %T Инвариант Тураева-Виро для трёхмерных многообразий является суммой трёх инвариантов %J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika %D 1996 %P 154-162 %N 3 %U http://geodesic.mathdoc.fr/item/VCHGU_1996_3_a19/ %G ru %F VCHGU_1996_3_a19
M. V. Sokolov. Инвариант Тураева-Виро для трёхмерных многообразий является суммой трёх инвариантов. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 3 (1996), pp. 154-162. http://geodesic.mathdoc.fr/item/VCHGU_1996_3_a19/
[1] Turaev V.G., Viro O.Y., “State sum invariants of 3-manifolds and quantum 6j-symbols”, Topology, 31 (1992), 865–902 | DOI | MR | Zbl
[2] Kauffman L.H., Lins S., “Computing Turaev-Viro invariants for 3-manifolds”, Manuscripta Math, 72 (1991), 81–94 | DOI | MR | Zbl
[3] Matveev S.V., “Complexity theory of three-dimentional manifolds”, Acta Applicandae Mathematicae, 19 (1990), 101–130 | MR | Zbl
[4] Casler B.G., “An imbedding for connected 3-manifolds with boundary”, Proc. Amer. Math. Soc., 16 (1965), 559–566 | MR | Zbl
[5] Matveev S.V., “Preobrazovaniya spetsialnykh spainov i gipoteza Zimana”, Izv. AN SSSR, 28:6 (1987), 1104–1116
[6] Piergallini R., “Standart moves for standart polyhedra and spines”, Rend. Circ. Mat. Palermo, 37:18 (1988), 391–414 | MR
[7] Sokolov M.V., Svoistva invariantov Turaeva-Viro dlya trekhmernykh mnogoobrazii, Dep. VINITI, # 583-V93