@article{VCHGU_1991_1_a1,
author = {A. B. Burmistrova},
title = {{\CYRK}{\cyrl}{\cyra}{\cyrs}{\cyrs}{\cyri}{\cyrf}{\cyri}{\cyrk}{\cyra}{\cyrc}{\cyri}{\cyrya} {\cyrr}{\cyre}{\cyrz}{\cyro}{\cyrn}{\cyra}{\cyrn}{\cyrs}{\cyrn}{\cyrery}{\cyrh} {\cyrk}{\cyrr}{\cyra}{\cyre}{\cyrv}{\cyrery}{\cyrh} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch} {\cyrp}{\cyro} {\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyro}{\cyrishrt} {\cyrch}{\cyra}{\cyrs}{\cyrt}{\cyri}},
journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
pages = {20--29},
year = {1991},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VCHGU_1991_1_a1/}
}
TY - JOUR AU - A. B. Burmistrova TI - Классификация резонансных краевых задач по линейной части JO - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika PY - 1991 SP - 20 EP - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/VCHGU_1991_1_a1/ LA - ru ID - VCHGU_1991_1_a1 ER -
A. B. Burmistrova. Классификация резонансных краевых задач по линейной части. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 1 (1991), pp. 20-29. http://geodesic.mathdoc.fr/item/VCHGU_1991_1_a1/
[1] Cesari L., Kannan R., “An abstract existence theorem at resonance”, Proc. Amer. Math. Soc., 63:2 (1977) | DOI | MR | Zbl
[2] Furi M., Pera H.P., “An alementary approach to boundary value problems at resonance”, Nonlinear Anal.: Theory meth. and Appl., 4:6 (1980), 1081-1089 | DOI | MR | Zbl
[3] Rakhmatullina L. F., “Operator Grina i regulyarizatsiya kraevykh zadach”, Differents. uravneniya, 15:3 (1979), 425–435 | MR | Zbl
[4] Anokhin A. V., K obschei teorii lineinykh funktsionalno-differentsialnykh uravnenii, Dep. v VINITI 18.03.81, No 1389-81., Perm. politekhn. in-t., Perm, 1981, 32 pp.
[5] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971, 104 pp.
[6] Kutateladze S. S., Osnovy funktsionalnogo analiza, Nauka, Novosibirsk, 1983, 220 pp. | MR
[7] Mawhin T., “Equivalence theorem for nonlinear operator equations and coincedence degree for som mapping in locally convex topological vector spaces”, J. Differential Equations, 12 (1972), 610–636 | DOI | MR | Zbl
[8] Furi M., Martelli M., Vignoli A., “Boundary value problems, Fredholm operators and their index”, J. Funct. Anal., 20:4 (1975), 304–308 | DOI
[9] Burmistrova A. B., Teoremy suschestvovaniya reshenii rezonansnykh kraevykh zadach, poluchennye $D$-reduktsiei k uravneniyu vtorogo roda, Dep. v VINITI 19.01.90, No 428-V-90., Perm. politekhn. in-t., Perm, 1990, 20 pp. | Zbl
[10] Burmistrova A. B., “Nekotorye teoremy suschestvovaniya reshenii rezonansnykh kraevykh zadach”, Kraevye zadachi, 1990, 7–13, Perm | MR
[11] Burmistrova A. B., “Ob odnom sposobe svedeniya rezonansnoi kraevoi zadachi k uravneniyu vtorogo roda”, Funktsionalno-differents. uravneniya, 1990, 155–160, Perm | MR | Zbl
[12] Abdullaev A.R., Burmistrova A.B., “Obobschennyi operator Grina i razreshimost rezonansnykh kraevykh zadach”, Differents. uravneniya, 26:11 (1990), 1860–1864 | MR
[13] Burmistrova A.B., “Primenenie metoda obobschennogo operatora Grina k neterovym kraevym zadacham”, VI nauchn. konf. molodykh uchenykh UNTs «Kibernetika» Gork. gos. universiteta: Tez. dokl., Gorkii, 1989, 34