Классификация резонансных краевых задач по линейной части
Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 1 (1991), pp. 20-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VCHGU_1991_1_a1,
     author = {A. B. Burmistrova},
     title = {{\CYRK}{\cyrl}{\cyra}{\cyrs}{\cyrs}{\cyri}{\cyrf}{\cyri}{\cyrk}{\cyra}{\cyrc}{\cyri}{\cyrya} {\cyrr}{\cyre}{\cyrz}{\cyro}{\cyrn}{\cyra}{\cyrn}{\cyrs}{\cyrn}{\cyrery}{\cyrh} {\cyrk}{\cyrr}{\cyra}{\cyre}{\cyrv}{\cyrery}{\cyrh} {\cyrz}{\cyra}{\cyrd}{\cyra}{\cyrch} {\cyrp}{\cyro} {\cyrl}{\cyri}{\cyrn}{\cyre}{\cyrishrt}{\cyrn}{\cyro}{\cyrishrt} {\cyrch}{\cyra}{\cyrs}{\cyrt}{\cyri}},
     journal = {Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika},
     pages = {20--29},
     year = {1991},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VCHGU_1991_1_a1/}
}
TY  - JOUR
AU  - A. B. Burmistrova
TI  - Классификация резонансных краевых задач по линейной части
JO  - Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
PY  - 1991
SP  - 20
EP  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VCHGU_1991_1_a1/
LA  - ru
ID  - VCHGU_1991_1_a1
ER  - 
%0 Journal Article
%A A. B. Burmistrova
%T Классификация резонансных краевых задач по линейной части
%J Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
%D 1991
%P 20-29
%N 1
%U http://geodesic.mathdoc.fr/item/VCHGU_1991_1_a1/
%G ru
%F VCHGU_1991_1_a1
A. B. Burmistrova. Классификация резонансных краевых задач по линейной части. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, no. 1 (1991), pp. 20-29. http://geodesic.mathdoc.fr/item/VCHGU_1991_1_a1/

[1] Cesari L., Kannan R., “An abstract existence theorem at resonance”, Proc. Amer. Math. Soc., 63:2 (1977) | DOI | MR | Zbl

[2] Furi M., Pera H.P., “An alementary approach to boundary value problems at resonance”, Nonlinear Anal.: Theory meth. and Appl., 4:6 (1980), 1081-1089 | DOI | MR | Zbl

[3] Rakhmatullina L. F., “Operator Grina i regulyarizatsiya kraevykh zadach”, Differents. uravneniya, 15:3 (1979), 425–435 | MR | Zbl

[4] Anokhin A. V., K obschei teorii lineinykh funktsionalno-differentsialnykh uravnenii, Dep. v VINITI 18.03.81, No 1389-81., Perm. politekhn. in-t., Perm, 1981, 32 pp.

[5] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971, 104 pp.

[6] Kutateladze S. S., Osnovy funktsionalnogo analiza, Nauka, Novosibirsk, 1983, 220 pp. | MR

[7] Mawhin T., “Equivalence theorem for nonlinear operator equations and coincedence degree for som mapping in locally convex topological vector spaces”, J. Differential Equations, 12 (1972), 610–636 | DOI | MR | Zbl

[8] Furi M., Martelli M., Vignoli A., “Boundary value problems, Fredholm operators and their index”, J. Funct. Anal., 20:4 (1975), 304–308 | DOI

[9] Burmistrova A. B., Teoremy suschestvovaniya reshenii rezonansnykh kraevykh zadach, poluchennye $D$-reduktsiei k uravneniyu vtorogo roda, Dep. v VINITI 19.01.90, No 428-V-90., Perm. politekhn. in-t., Perm, 1990, 20 pp. | Zbl

[10] Burmistrova A. B., “Nekotorye teoremy suschestvovaniya reshenii rezonansnykh kraevykh zadach”, Kraevye zadachi, 1990, 7–13, Perm | MR

[11] Burmistrova A. B., “Ob odnom sposobe svedeniya rezonansnoi kraevoi zadachi k uravneniyu vtorogo roda”, Funktsionalno-differents. uravneniya, 1990, 155–160, Perm | MR | Zbl

[12] Abdullaev A.R., Burmistrova A.B., “Obobschennyi operator Grina i razreshimost rezonansnykh kraevykh zadach”, Differents. uravneniya, 26:11 (1990), 1860–1864 | MR

[13] Burmistrova A.B., “Primenenie metoda obobschennogo operatora Grina k neterovym kraevym zadacham”, VI nauchn. konf. molodykh uchenykh UNTs «Kibernetika» Gork. gos. universiteta: Tez. dokl., Gorkii, 1989, 34