Experimental and theoretical study of catalytic and radiative characteristics of anti-oxidation and anti-erosion coatings for high-speed aircraft
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 4, pp. 594-602 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The catalytic activity coefficient and emissivity of the surface of thin-walled oxidation- and erosion-resistant coatings for high-speed aircraft were determined experimentally and theoretically. The coating was applied as an aerosol mixture to a carbon-carbon composite substrate, and the resulting sample was subjected to fully dissociated air to measure heat fluxes to the sample surface and its enthalpy. Using established relationships between total convective-diffusive heat fluxes, stagnation enthalpy, and the heterogeneous recombination coefficient of oxygen and nitrogen atoms into molecules, the catalytic activity coefficient and surface emissivity were calculated based on the Stefan–Boltzmann law utilizing the measured enthalpy (and temperature) of the wall. The experiments were performed on five coating types containing silicon, titanium, molybdenum, and boron. The findings were summarized in a table showing how the recombination coefficient and emissivity depend on heat fluxes and wall temperature.
Keywords: heat flux, recombination, catalysis, catalytic activity coefficient, emissivity, Prandtl number, Schmidt number, Lewis number, Mach number, Reynolds number.
Mots-clés : diffusion, dissociation
@article{UZKU_2024_166_4_a9,
     author = {O. V. Tushavina},
     title = {Experimental and theoretical study of catalytic and radiative characteristics of anti-oxidation and anti-erosion coatings for high-speed aircraft},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {594--602},
     year = {2024},
     volume = {166},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a9/}
}
TY  - JOUR
AU  - O. V. Tushavina
TI  - Experimental and theoretical study of catalytic and radiative characteristics of anti-oxidation and anti-erosion coatings for high-speed aircraft
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 594
EP  - 602
VL  - 166
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a9/
LA  - ru
ID  - UZKU_2024_166_4_a9
ER  - 
%0 Journal Article
%A O. V. Tushavina
%T Experimental and theoretical study of catalytic and radiative characteristics of anti-oxidation and anti-erosion coatings for high-speed aircraft
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 594-602
%V 166
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a9/
%G ru
%F UZKU_2024_166_4_a9
O. V. Tushavina. Experimental and theoretical study of catalytic and radiative characteristics of anti-oxidation and anti-erosion coatings for high-speed aircraft. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 4, pp. 594-602. http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a9/

[1] Krasnov N.F., Aerodynamics of Bodies of Revolution, Mashinostroenie, M., 1964, 572 pp. (In Russian)

[2] Dorrance W.H., Viscous Hypersonic Flow, Mir, M., 1966, 440 pp. (In Russian)

[3] Nikitin P.V., Sotnik E.V., Catalysis and Radiation in Thermal Protection Systems for Spacecraft, Yanus-K, M., 2013, 435 pp. (In Russian)

[4] Borovoi V.Ya., Skuratov A.S., Surzhikov S.T., “Study of convective heating of segment al-conical Martian descnt vehicle in shock wind tunnel”, Proc. 34th AIAA Fluid Dynamics Conf. (Portland, OR, 2004), 2004, AIAA 2004-2634 | DOI

[5] Pronina P.F., Tushavina O.V., Shumskaya S.A., Egorova M.S., “Analytical modeling of heat interchange in the blanket elements”, Tepl. Protsessy Tekh., 14:8 (2022), 348–353 (In Russian) | DOI

[6] Kuznetsova E.L., Tushavina O.V., “Experimental optimization of anti-oxidation and -erosion coating for carbon-carbon and carbon-ceramic heat shields”, STIN, 2023, no. 10, 11–14 (In Russian)

[7] Tushavina O.V., Pronina P.F., Egorova M.S., “Estimating heat fluxes and surface temperatures of high-speed aircrafts in a dissociated gas flow”, STIN, 2023, no. 12, 37–40 (In Russian)

[8] Astapov A.N., Terent'eva V.S., “Review of domestic designs in the field of protecting carbonaceous materials against gas corrosion and erosion in high-speed plasma fluxes”, Russ. J. Non-Ferrous Met., 57:2 (2016), 157–173 | DOI

[9] Astapov A.N., Zhestkov B.E., Pogozhev Yu.S., Zinovyeva M.V., Potanin A.Yu., Levashov E.A., “The oxidation resistance of the heterophase $\mathrm{ZrS_{2}}$-$\mathrm{MoSi_{2}}$-$\mathrm{ZrB_{2}}$ powders - derived coatings”, Corros. Sci., 189 (2021), 109587 | DOI

[10] Formalev V.F., Kolesnik S.A., Kuznetsova E.L., “Heat and mass transfer on the side surfaces of blunt nose parts of hypersonic aircraft”, High Temp., 60, suppl. 2 (2022), S288–S291 | DOI | DOI

[11] Formalev V.F., Kolesnik S.A., Garibyan B.A., “Heat transfer with absorption in anisotropic thermal protection of high-temperature products”, Vestn. MGTU im. N.E. Baumana. Ser. Estestv. Nauki, 2019, no. 5(86), 35–49 (In Russian) | DOI

[12] Formalev V.F., Kolesnik S.A., Garibyan B.A., “Mathematical modeling of heat and mass transfer during aerodynamic heating of the nose parts of hypersonic aircraft”, Vestn. MGTU im. N.E. Baumana. Ser. Estestv. Nauki, 2022, no. 1(100), 107–121 (In Russian) | DOI

[13] Formalev V.F., Garibyan B.A., Kolesnik S.A., “Simulation of heat and mass transfer on blunt bodies under aerodynamic heating of high-speed aircraft”, High Temp., 61:3 (2023), 365–371 | DOI | DOI

[14] Orekhov A.A., Rabinskiy L.N., Fedotenkov G.V., “Fundamental solutions of the equations of classical and generalized heat conduction models”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165, no. 4, 2023, 404–414 (In Russian) | DOI

[15] Kriven G., Kuznetsova E., Rabinskiy L., “The study of the temperature field propagation in a nonlinear anisotropic space with the relaxation time of the heat flux”, AIP Conf. Proc., 2910 (2023), 020204 | DOI

[16] Dobryanskiy V.N., Fedotenkov G.V., Orekhov A.A., Rabinskiy L.N., “Generalized unsteady thermal conductivity in a half-space”, Lobachevskii J. Math., 44:10 (2023), 4429–4437 | DOI

[17] Fedotenkov G., Rabinskiy L., Lurie S., “Conductive heat transfer in materials under intense heat flows”, Symmetry, 14:9 (2022), 1950 | DOI

[18] Dobryanskiy V.N., Fedotenkov G.V., Orekhov A.A., Rabinskiy L.N., “Estimation of finite heat distribution rate in the process of intensive heating of solids”, Lobachevskii J. Math., 43:7 (2022), 1832–1841 | DOI