Voir la notice du chapitre de livre
@article{UZKU_2024_166_4_a7,
author = {E. A. Lyamina and N. V. Kalenova},
title = {Stress analysis of a hyperbolic elastic-plastic disk under thermomechanical loading},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {566--579},
year = {2024},
volume = {166},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a7/}
}
TY - JOUR AU - E. A. Lyamina AU - N. V. Kalenova TI - Stress analysis of a hyperbolic elastic-plastic disk under thermomechanical loading JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2024 SP - 566 EP - 579 VL - 166 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a7/ LA - ru ID - UZKU_2024_166_4_a7 ER -
%0 Journal Article %A E. A. Lyamina %A N. V. Kalenova %T Stress analysis of a hyperbolic elastic-plastic disk under thermomechanical loading %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2024 %P 566-579 %V 166 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a7/ %G ru %F UZKU_2024_166_4_a7
E. A. Lyamina; N. V. Kalenova. Stress analysis of a hyperbolic elastic-plastic disk under thermomechanical loading. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 4, pp. 566-579. http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a7/
[1] Timoshenko S.P., Goodier J.N., Theory of Elasticity, Nauka, M., 1975, 576 pp. (In Russian)
[2] Dem'yanushko I.V., Birger I.A., Stress Calculations for Rotating Disks, Mashinostroenie, M., 1978, 247 pp. (In Russian)
[3] Gamer U., “The elastic-plastic shrink fit with supercritical interference”, Acta Mech., 61:1 (1986), 1–14 | DOI
[4] Gamer U., Kollmann F.G., “A theory of rotating elasto-plastic shrink fits”, Ing.-Arch., 56:4 (1986), 254–264 | DOI
[5] Parmaksizoglu C., Güven U., “Plastic stress distribution in a rotating disk with rigid inclusion under a radial temperature gradient”, Mech. Struct. Mach., 26:1 (1998), 9–20 | DOI
[6] Eraslan A.N., “Elastic-plastic deformations of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions”, Int. J. Mech. Sci., 45:4 (2003), 643–667 | DOI
[7] Prokudin A., “Schmidt-Ishlinskii yield criterion and a rotating cylinder with a rigid inclusion”, J. Appl. Comput. Mech., 7:2 (2021), 858–869 | DOI
[8] Alexandrov S., Elastic/Plastic Discs under Plane Stress Conditions, SpringerBriefs in Applied Sciences and Technology, Springer, Cham, 2015, xi+113 pp. | DOI
[9] Kleiber M., Kowalczyk P., “Sensitivity analysis in plane stress elasto-plasticity and elasto-viscoplasticity”, Comput. Methods Appl. Mech. Eng., 137:3–4 (1996), 395–409 | DOI
[10] Güven U., “Elastic-plastic stress distribution in a rotating hyperbolic disk with rigid inclusion”, Int. J. Mech. Sci., 40:1 (1990), 97–109 | DOI
[11] Calderale P.M., Vivio F., Vullo V., “Thermal stresses of rotating hyperbolic disks as particular case of non-linearly variable thickness disks”, J. Therm. Stresses, 35:10 (2012), 877–891 | DOI
[12] Motameni A., “A parametric study on the elastic limit stresses of rotating variable thickness orthotropic disk”, Arch. Appl. Mech., 94:3 (2024), 737–752 | DOI
[13] Demir E., Callioglu H., Sayer M., “Elasto-plastic thermal stress analysis of functionally graded hyperbolic discs”, Struct. Eng. Mech., 62:5 (2017), 587–593 | DOI
[14] Salehian M., Shahriari B., Yousefi M., “Investigating the effect of angular acceleration of the rotating disk having variable thickness and density function on shear stress and tangential displacement”, J. Braz. Soc. Mech. Sci. Eng., 41:1 (2019), 31 | DOI
[15] Kutsal S.M., Coşkun S.B., “Deformation analysis of variable thickness rotating disks using an improved Adomian decomposition technique”, Int. J. Appl. Mech., 12:1 (2020), 2050002 | DOI
[16] Thakur P., Sethi M., Kumar N., Gupta K., Bhardwaj R.K., “Analytical solution of hyperbolic deformable disk having variable density”, Mech. Solids, 56:6 (2021), 1039–1046 | DOI
[17] Thakur P., Sethi M., Kumar N., Gupta N., Gupta K., Bhardwaj R.K., “Stress analysis in an isotropic hyperbolic rotating disk fitted with rigid shaft”, Z. Angew. Math. Phys., 73:1 (2022), 23 | DOI
[18] Kutsal S.M., Coşkun S.B., “Analytical approximations for elastic limit angular velocities of rotating annular disks with hyperbolic thickness”, J Braz. Soc. Mech. Sci. Eng., 45:1 (2023), 339 | DOI
[19] Yella Reddy T., Srinath H., “Elastic stresses in a rotating anisotropic annular disk of variable thickness and variable density”, Int. J. Mech. Sci., 16:2 (1974), 85–89 | DOI