Heat and mass transfer in anisotropic heat-protective composite materials under aerodynamic heating
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 4, pp. 555-565 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article presents a mathematical model of heat and mass transfer in anisotropic heat-protective composite materials (HPCM) during phase transformations of HPCM binders with the formation of a porous coke residue and pyrolysis gases filtering through the residue to the outer boundary. Using known binder decomposition and nonlinear filtration laws for random HPCMs, the model determines the velocity and coordinates of the two-dimensional HPCM binder decomposition zone, as well as the two-dimensional regions of the porous-gas residue and the initial phase, which are unsteadily separated by a moving zone of binder decomposition. In the newly formed porous-gas region, a two-dimensional unsteady problem of anisotropic heat conduction was solved taking into account nonlinear anisotropic gas filtering. In the initial region unaffected by the binder decomposition, a two-dimensional unsteady problem of anisotropic heat conduction was solved. The mass and linear velocities of the binder decomposition (pyrolysis) zone were calculated from Stefan conditions for heat flow and temperature continuity. The complex model was solved by the previously developed effective and absolutely stable method of alternating directions with extrapolation. New results were obtained and discussed.
Keywords: anisotropy, nonlinear filtration, heat flow, temperature, heat conductivity tensor, permeability tensor, moving pyrolysis zone, anisotropic heat conduction and filtration equation, numerical method.
@article{UZKU_2024_166_4_a6,
     author = {E. L. Kuznetsova and A. A. Orekhov and V. F. Formalev},
     title = {Heat and mass transfer in anisotropic heat-protective composite materials under aerodynamic heating},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {555--565},
     year = {2024},
     volume = {166},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a6/}
}
TY  - JOUR
AU  - E. L. Kuznetsova
AU  - A. A. Orekhov
AU  - V. F. Formalev
TI  - Heat and mass transfer in anisotropic heat-protective composite materials under aerodynamic heating
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 555
EP  - 565
VL  - 166
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a6/
LA  - ru
ID  - UZKU_2024_166_4_a6
ER  - 
%0 Journal Article
%A E. L. Kuznetsova
%A A. A. Orekhov
%A V. F. Formalev
%T Heat and mass transfer in anisotropic heat-protective composite materials under aerodynamic heating
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 555-565
%V 166
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a6/
%G ru
%F UZKU_2024_166_4_a6
E. L. Kuznetsova; A. A. Orekhov; V. F. Formalev. Heat and mass transfer in anisotropic heat-protective composite materials under aerodynamic heating. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 4, pp. 555-565. http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a6/

[1] Formalev V.F., Kuznetsova E.L., Heat and Mass Transfer in Anisotropic Bodies under Aerodynamic Heating, MAI-PRINT, M., 2010, 308 pp. (In Russian)

[2] Kuznetsova E.L., Makarenko A.V., “Nonlinear filtration of pyrolytic gases in thermal decomposition of heat-shielding composite binders”, Russ. Eng. Res., 43:11 (2023), 1430–1433 | DOI

[3] Kuznetsova E.L., “A method for the determination of the mass density of heat protective composite materials in the domain of thermal destruction of binding agents under high temperatures”, Mekh. Kompoz. Mater. Konstr., 29:3 (2023), 382–389 (In Russian) | DOI

[4] Orekhov A.A., Rabinskiy L.N., Fedotenkov G.V., “Fundamental solutions of the equations of classical and generalized heat conduction models”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165:4 (2023), 404–414 | DOI

[5] Fedotenkov G.V., Rabinskiy L.N., Lurie S.A., “Conductive heat transfer in materials under intense heat flows”, Symmetry, 14:9 (2022), 1950 | DOI

[6] Dobryanskiy V.N., Fedotenkov G.V., Orekhov A.A., Rabinskiy L.N., “Estimation of finite heat distribution rate in the process of intensive heating of solids”, Lobachevskii J. Math., 43:7 (2022), 1832–1841 | DOI

[7] Orekhov A.A., Rabinskiy L.N., Fedotenkov G.V., “Analytical model of heating an isotropic half-space by a moving laser source with a Gaussian distribution”, Symmetry, 14:9 (2022), 650 | DOI

[8] Rabinskiy L.N., Tushavina O.V., Starovoitov E.I., “Study of thermal effects of electromagnetic radiation on the environment from space rocket activity”, INCAS Bull., 12 (2020), 141–148 | DOI

[9] Orekhov A.A., Rabinskiy L.N., Fedotenkov G.V., Hein T.Z., “Heating of a half-space by a moving thermal laser pulse source”, Lobachevskii J. Math., 42:8 (2021), 1912–1919 | DOI

[10] Dobryanskiy V.N., Fedotenkov G.V., Orekhov A.A., Rabinskiy L.N., “Generalized unsteady thermal conductivity in a half-space”, Lobachevskii J. Math., 44:10 (2023), 4429–4437 | DOI

[11] Kriven G., Kuznetsova E., Rabinskiy L., “The study of the temperature field propagation in a nonlinear anisotropic space with the relaxation time of the heat flux”, AIP Conf. Proc., 2910 (2023), 020204 | DOI

[12] Formalev V.F., Kolesnik S.A., Garibyan B.A., “Heat and mass transfer in composites with thermal waves due to phase transitions”, Russ. Eng. Res., 44:5 (2024), 701–704 | DOI

[13] Formalev V.F., Garibyan B.A., Orekhov A.A., “Mathematical modeling of heat transfer in anisotropic half-space based on the generalized parabolic wave heat transfer equation”, Lobachevskii J. Math., 43:7 (2022), 1842–1849 | DOI

[14] Formalev V.F., Garibyan B.A., Kolesnik S.A., “Modeling of heat and mass transfer in thermoprotective composite materials under conditions of phase transformations at high temperatures”, J. Eng. Phys. Thermophys., 97:2 (2024), 397–405 | DOI

[15] Formalev V.F., Kolesnik S.A., Garibyan B.A., “Heat transfer with absorption in anisotropic thermal protection of high-temperature products”, Vestn. MGTU im. N.E. Baumana. Ser. Est. Nauki, 2019, no. 5, 35–49 (In Russian) | DOI

[16] Kuznetsova E.L., Developing mathematical methods for numerical and analytical solution of equations with mixed derivatives and using them for heat and mass transfer modeling, Extended Abstract of Doct. Phys.-Math. Sci. Diss., MAI, M., 2011, 36 pp. (In Russian)

[17] Kuznetsova E.L., Mathematical Modeling of Heat and Mass Transfer in Composite Materials at High-Temperature Heating in the Elements of Rocket and Space Technique, ed. Formalev V.F., MAI, M., 2010, 160 pp. (In Russian)

[18] Tushavina O.V., Egorova M.S., “Problems of heat and mass transfer in chemically reacting boundary layers on blunted bodies”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165, no. 3, 2023, 294–306 | DOI

[19] Tushavina O.V., Paleshkin A.V., Pronina P.F., Shemetova E.V., “Modeling the thermal state of small spacecraft: Errors sue to incorrect assessment of the thermal environment”, Russ. Eng. Res., 43:11 (2023), 1452–1456 | DOI

[20] Avduevskii V.S., Galitseiskii B.M., Glebov G.A., et al., Fundamentals of Heat Transfer in Aviation and Space Engineering, Mashinostroenie, M., 1975, 624 pp. (In Russian)