Computer model of a two-stage diagnostic system for power transmission lines with tree topology
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 4, pp. 518-531 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A computer model of a two-stage system for locating faults by analyzing reflected signals was developed. The simulation results for power transmission lines with varying numbers of branches extending from the main line were discussed. The relationship between fault location efficiency and the network bit error rate was analyzed. The dependence of diagnostic reliability on the number of branches and fault types was examined.
Keywords: two-stage diagnostic system, power transmission line with tree topology, bit error, computer simulation, FSK modulation.
@article{UZKU_2024_166_4_a4,
     author = {A. V. Karpov and D. V. Sarychev},
     title = {Computer model of a two-stage diagnostic system for power transmission lines with tree topology},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {518--531},
     year = {2024},
     volume = {166},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a4/}
}
TY  - JOUR
AU  - A. V. Karpov
AU  - D. V. Sarychev
TI  - Computer model of a two-stage diagnostic system for power transmission lines with tree topology
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 518
EP  - 531
VL  - 166
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a4/
LA  - ru
ID  - UZKU_2024_166_4_a4
ER  - 
%0 Journal Article
%A A. V. Karpov
%A D. V. Sarychev
%T Computer model of a two-stage diagnostic system for power transmission lines with tree topology
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 518-531
%V 166
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a4/
%G ru
%F UZKU_2024_166_4_a4
A. V. Karpov; D. V. Sarychev. Computer model of a two-stage diagnostic system for power transmission lines with tree topology. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 4, pp. 518-531. http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a4/

[1] Bani Ahmad A.Y.A., William P., Uike D., Murgai A., Bajaj K.K., Deepak A., Shrivastava A., “Framework for sustainable energy management using smart grid panels integrated with machine learning and IOT based approach”, Int. J. Intell. Syst. Appl. Eng., 12:2s (2024), 581–590

[2] Bishnoi D., Chaturvedi H., “A review on emerging trends in smart grid energy management systems”, Int. J. Renewable Energy Res., 11:3 (2021), 952–966 | DOI

[3] Gungor V.C., Sahin D., Kocak T., Ergut S., Buccella C., Cecati C., “Smart grid technologies: Communication technologies and standards”, IEEE Trans. Ind. Inf., 7:4 (2011), 529–539 | DOI

[4] Shagiev R.I., Karpov A.V., Kalabanov S.A., “The model of the power line's fault location method using time domain reflectometry”, J. Phys.: Conf. Ser., 803 (2017), 012137 | DOI

[5] Shagiev R.I., Karpov A.V., Kalabanov S.A., “A method of fault location detection on branched power transmission lines”, J. Electr. Eng., 90:2 (2019), 135–139 | DOI

[6] Karpov A., Sarychev A., Kalabanov S., “Computer model of “smart grid” for power transmission lines with tree-like topology”, Proc. 2023 Int. Russ. Smart Ind. Conf., SmartIndustryCon (Sochi, 2023), IEEE Xplore, 2023, 600–605 | DOI

[7] Proakis J.G., Salehi M., Digital Communications, 5th ed., McGraw-Hill, New York, NY, 2001, 1150 pp.

[8] Watson B., “FSK: Signals and demodulation”, Watkins–Johnson Tech-Notes, 7:5 (1980), 1–15

[9] User's Guide on the Use of PSCAD, Manitoba HVDC Research Centre, Winnipeg, 2010, 492 pp. https://hvdc.ca/uploads/ck/files/reference_material/PSCAD_User_Guide_v4_3_1.pdf

[10] Gustavsen B., Irwin G., Mangelrød R., Brandt D., Kent K., “Transmission line models for the simulation of interaction phenomena between parallel AC and DC overhead lines”, Proc. IPST'99 — Int. Conf. on Power Systems Transients (Budapest, 1999), 1999, 99IPST002-1.5, 61–67

[11] Morched A., Gustavsen B., Tartibi M., “A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables”, IEEE Trans. Power Delivery, 14:3 (1999), 1032–1038 | DOI

[12] Guidelines for calculating parameters and selecting high-frequency channels on 35–750 kV AC transmission lines, Corporate Standard of OAO ROSSETI. STO 56947007-33.060.40.322-2022, Otrasl. Stand. OAO “ROSSETI”, M., 2022, 87 pp. (In Russian)

[13] Methodical Guidelines for calculating parameters and selecting schemes of high-frequency paths on 35–750 kV AC transmission lines, Corporate Standard of OAO ROSSETI. STO 56947007-33.060.40.052-2010, Otrasl. Stand. OAO “ROSSETI”, M., 2010, 49 pp. (In Russian)

[14] Simon M.K., Alouini M.S., Digital Communication over Fading Channels: A Unified Approach to Performance Analysis, 1st ed., Wiley, New York, NY, 2000, xix+544 pp.