Identifying boundary conditions of an oil reservoir flow model from well pressure measurements. Part 1: Homogeneous reservoir
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 4, pp. 603-623 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method was outlined for determining the coefficient of third-kind boundary conditions of the piezoconductivity problem in an oil reservoir, particularly on its external contour, which has, as a rule, no specific hydrodynamic properties and is set to reduce computational costs. The coefficient was determined using an integral balance model of an interaction between the oil deposit and the outer region of the reservoir. The optimization problem of approximating the average reservoir pressure to the values obtained from the well pressure measurements was solved. Assuming the homogeneity of the reservoir, the applicability of the algorithm was assessed under various geometries of the external contour, well placements, and operating conditions. The stability of the algorithm for solving the inverse problem was analyzed against pressure measurement errors. The proposed approach offers a relatively simple algorithm for defining the boundary conditions of a reservoir flow model, which enables a good approximation of the hydrodynamic interaction of the reservoir with its outer region. However, due to uncertainties in the initial data for regions distant from the well-drilled area of the reservoir, significant difficulties remain in calibrating the model.
Mots-clés : oil reservoir, adaptation
Keywords: flow model, piezoconductivity equation, boundary condition, integral balance model, reservoir pressure measurement, optimization, stability.
@article{UZKU_2024_166_4_a10,
     author = {D. I. Usmanov and K. A. Potashev and D. R. Salimyanova},
     title = {Identifying boundary conditions of an oil reservoir flow model from well pressure measurements. {Part~1:} {Homogeneous} reservoir},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {603--623},
     year = {2024},
     volume = {166},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a10/}
}
TY  - JOUR
AU  - D. I. Usmanov
AU  - K. A. Potashev
AU  - D. R. Salimyanova
TI  - Identifying boundary conditions of an oil reservoir flow model from well pressure measurements. Part 1: Homogeneous reservoir
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 603
EP  - 623
VL  - 166
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a10/
LA  - ru
ID  - UZKU_2024_166_4_a10
ER  - 
%0 Journal Article
%A D. I. Usmanov
%A K. A. Potashev
%A D. R. Salimyanova
%T Identifying boundary conditions of an oil reservoir flow model from well pressure measurements. Part 1: Homogeneous reservoir
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 603-623
%V 166
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a10/
%G ru
%F UZKU_2024_166_4_a10
D. I. Usmanov; K. A. Potashev; D. R. Salimyanova. Identifying boundary conditions of an oil reservoir flow model from well pressure measurements. Part 1: Homogeneous reservoir. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 4, pp. 603-623. http://geodesic.mathdoc.fr/item/UZKU_2024_166_4_a10/

[1] Guidance Document 153-39.0-047-00. Guidelines for developing continuous geotechnological models of oil and oil-gas fields, Mintopenergo, M., 2000, 130 pp. (In Russian)

[2] Pirson S.J., Oil Reservoir Engineering, McGraw-Hill, New York, NY, 1958, 735 pp.

[3] Craft B.C., Hawkins M.F., Applied Petroleum Reservoir Engineering, ed. Terry R.E., Prentice Hall, Upper Saddle River, NJ, 1991, 431 pp.

[4] Dake L.P, The Practice of Reservoir Engineering, Developments in Petroleum Science, 36, Elsevier Sci., 2001, 572 pp.

[5] Omeke J.E., Nwachukwu A., Awo R.O., Boniface O., Uche I.N., “A new approach to aquifer influx calculation for finite aquifer system”, Proc. SPE Nigeria Annu. Int. Conf. Exhib. (Abuja, Nigeria, July 2011), Abuja, 2011, SPE-150733-MS | DOI

[6] Ahmed T.H., Reservoir Engineering Handbook, Gulf Publ., Houston, TX, 2000, xiv+863 pp.

[7] Aziz K., Settari A., Petroleum Reservoir Simulation, Appl. Sci. Publ., London, 1979, 135–139

[8] Gilman J.R., Ozgen C., Reservoir Simulation: History Matching and Forecasting, Soc. Pet. Eng., Richardson, TX, 2013, 120 pp. | DOI

[9] Mohaghegh S.D., Data-Driven Reservoir Modeling, Soc. Pet. Eng., Richardson, TX, 2017, 166 pp. | DOI

[10] Dake L.P., Fundamentals of Reservoir Engineering, Developments in Petroleum Science, 8, Elsevier, 1983, 462 pp.

[11] Towler B.F., Fundamental Principles of Reservoir Engineering, SPE Textbook Series, 8, Soc. Pet. Eng., Richardson, TX, 2002, 232 pp.

[12] Muskat M., “Physical Principles of Oil Production”, International Series in Pure and Applied Physics, McGraw-Hill Book Co., New York, NY, 1949, 406–411

[13] Farough A.S.M., Nielsen R.F., “The material balance approach vs reservoir simulation as an aid to understanding reservoir mechanics”, Proc. Fall Meet. of the Society of Petroleum Engineers of AIME (Houston, Texas, October, 1970), Soc. Pet. Eng., 1970, SPE-3080-MS | DOI

[14] Levine J.S., Prats M., “The calculated performance of solution-gas-drive reservoirs”, SPE J., 1:3 (1961), SPE-1520-G, 142–152 | DOI

[15] Pletcher J.L., “Improvements to reservoir material-balance methods”, SPE Reservoir Eval. Eng., 5:1 (2002), SPE-75354-PA, 49–59 | DOI

[16] Esor E., Dresda S., Monico C., “Use of material balance to enhance 3D reservoir simulation: A case study”, Proc. SPE Annu. Tech. Conf. Exhib. (Houston, Texas, September, 2004), SPE, 2004, SPE-90362-MS | DOI

[17] MBAL: Analytical Reservoir Engineering Toolkit, Petroleum Engineering Software, IPM Suite, Petex, PE Limited, 2024

[18] Robinson M.P., “Pressure interference correction to the material balance equation for water-drive reservoirs using a digital computer”, Trans. AIME, 213:1 (1958), SPE-1006-G, 418–422 | DOI

[19] Irby T.L., Zurawsky L.G., Clapham E.E., “Material-balance analysis of a water-drive reservoir with an unusual development history”, J. Pet. Technol., 14:1 (1962), SPE-70-PA, 37–42 | DOI

[20] Sills S.R., “Improved material-balance regression analysis for waterdrive oil and gas reservoirs”, SPE Reservoir Eng., 11:2 (1996), SPE-28630-PA, 127–134 | DOI

[21] Yildiz T., Khosravi A., “An analytical bottomwaterdrive aquifer model for material-balance analysis”, SPE Reservoir Eval. Eng., 10:6 (2007), PE-103283-PA, 618–628 | DOI

[22] Van Everdingen A.F., Hurst W., “The application of the Laplace transformation to flow problems in reservoirs”, J. Pet. Technol., 1:12 (1949), SPE-949305-G, 305–324 | DOI

[23] Fetkovich M.J., “A simplified approach to water influx calculations-finite aquifer systems”, J. Pet. Technol., 23:7 (1971), SPE-2603-PA, 814–828 | DOI

[24] Carter R.D., Tracy G.W., “An improved method for calculating water influx”, Trans. AIME, 219:1 (1960), SPE-1626-G, 415–417 | DOI

[25] Lee J., Wattenbarger R., Gas Reservoir Engineering, SPE Textbook Ser., 5, Soc. Pet. Eng., Richardson, TX, 1996, 349 pp.

[26] Edwardson M.L., Girner H.M., Parkinson H.R., Williams C.D., Matthews C.S., “Calculation of formation temperature disturbances caused by mud circulation”, J. Pet. Technol., 14:4 (1962), SPE-124-PA, 416–426 | DOI

[27] Usmanov D., Potashev K., Filatov E., Ganiev R., “Identification of the boundary conditions of the reservoir hydrodynamic model by reservoir pressure measurements in wells”, AIP Conf. Proc., 3119:1 (2024), 040006 | DOI

[28] Barenblatt G.I., Entov V.M., Ryzhik V.M., Theory of Fluid Flows Through Natural Rocks, Nedra, M., 1984, 212 pp. (In Russian)

[29] Mazo A.B., Potashev K.A., “Petroleum reservoir simulation using super-element method with local detalization of the solution”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 3, 2017, 327–339 (In Russian)

[30] Havlena D., Odeh A.S., “The material balance as an equation of a straight line”, J. Pet. Technol., 15:8 (1963), 896–900 | DOI

[31] Kamal M.M., Transient Well Testing, SPE Monogr. Ser.: Henry L. Doherty Series, 23, Soc. Pet. Eng., Richardson, TX, 2009, 850 pp. | DOI

[32] Tikhonov A.N., Arsenin V.Y., Solutions of Ill-Posed Problems, Nauka, M., 1986, 288 pp. (In Russian)