@article{UZKU_2024_166_3_a8,
author = {A. O. Lapich and M. Y. Medvedik},
title = {Algorithm for searching inhomogeneities in inverse nonlinear diffraction problems},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {395--406},
year = {2024},
volume = {166},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a8/}
}
TY - JOUR AU - A. O. Lapich AU - M. Y. Medvedik TI - Algorithm for searching inhomogeneities in inverse nonlinear diffraction problems JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2024 SP - 395 EP - 406 VL - 166 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a8/ LA - ru ID - UZKU_2024_166_3_a8 ER -
%0 Journal Article %A A. O. Lapich %A M. Y. Medvedik %T Algorithm for searching inhomogeneities in inverse nonlinear diffraction problems %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2024 %P 395-406 %V 166 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a8/ %G ru %F UZKU_2024_166_3_a8
A. O. Lapich; M. Y. Medvedik. Algorithm for searching inhomogeneities in inverse nonlinear diffraction problems. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 3, pp. 395-406. http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a8/
[1] Korjenevsky A.V. Electrical impedance tomography system suitable for manufacturing in non-standard conditions, Zh. Radioelektron., 2021, no. 9 (In Russian) | DOI
[2] Zarafshani A., Bach T., Chatwin C.R., Tang S., Xiang L., Zheng B., “Conditioning electrical impedance mammography system”, Measurement, 116 (2018), 38–48 | DOI
[3] Vladimirov V.S., Zharinov V.V., Equations of Mathematical Physics, Fizmatlit, M., 2004, 400 pp. (In Russian)
[4] Sommerfeld A., “Die Greensche Funktion der Schwingungsgleichung”, Jahresber. Dtsch. Math.-Ver., 21 (1912), 309–353 (In German)
[5] Smirnov Yu.G., Tsupak A.A., Mathematical Theory of Diffraction of Acoustic and Electromagnetic Waves by Screens and Inhomogeneous Solids, Ru-Science, M., 2018, 223 pp. (In Russian)
[6] Lapich A.O., Medvedik M.Y., “Solution of a scalar two-dimensional nonlinear diffraction problem for objects of arbitrary shape”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165, no. 2, 2023, 167–177 (In Russian) | DOI
[7] Lapich A.O., Medvedik M.Y., “Method for restoring the parameters of body inhomogeneities from the results of electromagnetic field measurements”, Modeli, Sist., Seti Ekon., Tekh., Prir. O-vo, 2023, no. 4, 142–153 (In Russian) | DOI
[8] Lapich A.O., Medvedik M.Y., “An iterative scheme for solving a Lippmann-Schwinger nonlinear integral equation by the Galerkin method”, Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki, 2023, no. 3, 66–73 (In Russian) | DOI
[9] Medvedik M.Yu., Smirnov Yu.G., Tsupak A.A., “The two-step method for determining a piecewise-continuous refractive index of a 2D scatterer by near field measurements”, Inverse Probl. Sci. Eng., 28:3 (2020), 427–447 | DOI
[10] Medvedik M.Yu., Smirnov Yu.G., Tsupak A.A., “Non-iterative two-step method for solving scalar inverse 3D diffraction problem”, Inverse Probl. Sci. Eng., 28:10 (2020), 1474–1492 | DOI
[11] Medvedik M.Yu., “A subhierarchic method for solving the Lippmann-Schwinger integral equation on bodies of complex shapes”, J. Commun. Technol. Electron., 57:2 (2012), 158–163 | DOI
[12] Medvedik M.Y., “Solution of integral equations by means of subhierarchic method for generalized computational grids”, Math. Models Comput. Simul., 7:6 (2015), 570–580 | DOI