Algorithm for searching inhomogeneities in inverse nonlinear diffraction problems
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 3, pp. 395-406 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This study aims to solve the inverse problem for determining the heterogeneity of an object. The scattered field was measured outside its boundaries at a set of observation points. Both the radiation source and observation points were assumed to be located outside the object. The scattered field was modeled by solving the direct problem. The inverse problem was solved using a two-step method. Nonlinearities of various types were considered. When introducing the computational grid, the generalized grid method was applied. A numerical method for solving the problem was proposed and implemented. The numerical results obtained illustrate how the problem is solved for specified experimental data.
Keywords: two-step method, integral equation, nonlinear diffraction problem, collocation method, numerical method.
@article{UZKU_2024_166_3_a8,
     author = {A. O. Lapich and M. Y. Medvedik},
     title = {Algorithm for searching inhomogeneities in inverse nonlinear diffraction problems},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {395--406},
     year = {2024},
     volume = {166},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a8/}
}
TY  - JOUR
AU  - A. O. Lapich
AU  - M. Y. Medvedik
TI  - Algorithm for searching inhomogeneities in inverse nonlinear diffraction problems
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 395
EP  - 406
VL  - 166
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a8/
LA  - ru
ID  - UZKU_2024_166_3_a8
ER  - 
%0 Journal Article
%A A. O. Lapich
%A M. Y. Medvedik
%T Algorithm for searching inhomogeneities in inverse nonlinear diffraction problems
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 395-406
%V 166
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a8/
%G ru
%F UZKU_2024_166_3_a8
A. O. Lapich; M. Y. Medvedik. Algorithm for searching inhomogeneities in inverse nonlinear diffraction problems. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 3, pp. 395-406. http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a8/

[1] Korjenevsky A.V. Electrical impedance tomography system suitable for manufacturing in non-standard conditions, Zh. Radioelektron., 2021, no. 9 (In Russian) | DOI

[2] Zarafshani A., Bach T., Chatwin C.R., Tang S., Xiang L., Zheng B., “Conditioning electrical impedance mammography system”, Measurement, 116 (2018), 38–48 | DOI

[3] Vladimirov V.S., Zharinov V.V., Equations of Mathematical Physics, Fizmatlit, M., 2004, 400 pp. (In Russian)

[4] Sommerfeld A., “Die Greensche Funktion der Schwingungsgleichung”, Jahresber. Dtsch. Math.-Ver., 21 (1912), 309–353 (In German)

[5] Smirnov Yu.G., Tsupak A.A., Mathematical Theory of Diffraction of Acoustic and Electromagnetic Waves by Screens and Inhomogeneous Solids, Ru-Science, M., 2018, 223 pp. (In Russian)

[6] Lapich A.O., Medvedik M.Y., “Solution of a scalar two-dimensional nonlinear diffraction problem for objects of arbitrary shape”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165, no. 2, 2023, 167–177 (In Russian) | DOI

[7] Lapich A.O., Medvedik M.Y., “Method for restoring the parameters of body inhomogeneities from the results of electromagnetic field measurements”, Modeli, Sist., Seti Ekon., Tekh., Prir. O-vo, 2023, no. 4, 142–153 (In Russian) | DOI

[8] Lapich A.O., Medvedik M.Y., “An iterative scheme for solving a Lippmann-Schwinger nonlinear integral equation by the Galerkin method”, Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki, 2023, no. 3, 66–73 (In Russian) | DOI

[9] Medvedik M.Yu., Smirnov Yu.G., Tsupak A.A., “The two-step method for determining a piecewise-continuous refractive index of a 2D scatterer by near field measurements”, Inverse Probl. Sci. Eng., 28:3 (2020), 427–447 | DOI

[10] Medvedik M.Yu., Smirnov Yu.G., Tsupak A.A., “Non-iterative two-step method for solving scalar inverse 3D diffraction problem”, Inverse Probl. Sci. Eng., 28:10 (2020), 1474–1492 | DOI

[11] Medvedik M.Yu., “A subhierarchic method for solving the Lippmann-Schwinger integral equation on bodies of complex shapes”, J. Commun. Technol. Electron., 57:2 (2012), 158–163 | DOI

[12] Medvedik M.Y., “Solution of integral equations by means of subhierarchic method for generalized computational grids”, Math. Models Comput. Simul., 7:6 (2015), 570–580 | DOI