@article{UZKU_2024_166_3_a7,
author = {V. I. Korzyuk and J. V. Rudzko},
title = {Initial-boundary value problem {with~Dirichlet} and {Wentzell} conditions for~a~mildly quasilinear biwave equation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {377--394},
year = {2024},
volume = {166},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a7/}
}
TY - JOUR AU - V. I. Korzyuk AU - J. V. Rudzko TI - Initial-boundary value problem with Dirichlet and Wentzell conditions for a mildly quasilinear biwave equation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2024 SP - 377 EP - 394 VL - 166 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a7/ LA - en ID - UZKU_2024_166_3_a7 ER -
%0 Journal Article %A V. I. Korzyuk %A J. V. Rudzko %T Initial-boundary value problem with Dirichlet and Wentzell conditions for a mildly quasilinear biwave equation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2024 %P 377-394 %V 166 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a7/ %G en %F UZKU_2024_166_3_a7
V. I. Korzyuk; J. V. Rudzko. Initial-boundary value problem with Dirichlet and Wentzell conditions for a mildly quasilinear biwave equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 3, pp. 377-394. http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a7/
[1] Korzyuk V., Vinh N.V., Minh N.T., “Classical solution of the Cauchy problem for biwave equation: Application of Fourier transform”, Math. Modell. Anal., 17:5 (2012), 630–641 | DOI
[2] Thomson W.T, Theory of Vibration with Applications, Taylor Francis, London–New York, NY, 2010, 546 pp.
[3] Timoshenko–Ehrenfest beam theory, Wikipedia, the free encyclopedia, https://en.wikipedia.org/wiki/Timoshenko-Ehrenfest_beam_theory
[4] Korzyuk V.I., Konopel'ko O.A., Cheb E.S., “ Boundary-value problems for fourth-order equations of hyperbolic and composite types”, J. Math. Sci., 171:1 (2010), 89–115 | DOI
[5] Korzyuk V.I., Cheb E.S., Thu L.T., “Solution of the first mixed problem for the non-rigorous biwave equation”, Dokl. Nats. Akad. Nauk Belarusi, 55:4 (2011), 5–13 (In Russian)
[6] Korzyuk V.I., Cheb E.S., “Mixed problems for a biwave equation”, Vestn. BGU. Ser. 1, Fiz. Mat. Inf., 2005, no. 1, 63–68 (In Russian)
[7] Korzyuk V.I., Cheb E.S., “Goursat problem for a fourth-order equation with the biwave operator”, Differ. Equations, 45:10 (2009), 1467–1472 | DOI
[8] Fushchych W.I., “Symmetry in problems of mathematical physics”, Algebraic-Theoretical Studies in Mathematical Physics, Inst. Mat. Akad. Nauk USSR, Kyiv, 1981, 6–28 (In Russian)
[9] Fushchych W.I., Roman O.V., Zhdanov R.Z., “Symmetry reduction and exact solutions of nonlinear biwave equations”, Rep. Math. Phys., 37:2 (1996), 267–281 | DOI
[10] Bibilashvili T., Kharibegashvili S., “Darboux type problem for a class of fourth-order nonlinear hyperbolic equations”, Mem. Differ. Equations Math. Phys., 89 (2023), 39–59
[11] Kharibegashvili S., Midodashvili B., “On one boundary value problem for a nonlinear equation with the iterated wave operator in the principal part”, Georgian Math. J., 15:3 (2008), 541–554 | DOI
[12] Kharibegashvili S., “On the solvability of the Cauchy characteristic problem for a nonlinear equation with iterated wave operator in the principal part”, J. Math. Anal. Appl., 338:1 (2008), 71–81 | DOI
[13] Kharibegashvili S., Midodashvili B., “Solvability of characteristic boundary-value problems for nonlinear equations with iterated wave operator in the principal part”, Electron. J. Differ. Equations, 2008:72 (2008), 1–12
[14] Korzyuk V.I., Rudzko J.V., “Classical solution of the first mixed problem for the telegraph equation with a nonlinear potential”, Differ. Equations, 58:2 (2022), 175–186 | DOI
[15] Korzyuk V.I., Rudzko J.V., “Classical solution of the first mixed problem for the telegraph equation with a nonlinear potential in a curvilinear quadrant”, Differ. Equations, 59:8 (2023), 1075–1089 | DOI
[16] Korzyuk V.I., Stolyarchuk I.I., “Classical solution of the first mixed problem for second-order hyperbolic equation in curvilinear half-strip with variable coefficients”, Differ. Equations, 53:1 (2017), 74–85 | DOI
[17] Trenogin V.A., “Global invertibility of nonlinear operators and the method of continuation with respect to a parameter”, Dokl. Math., 54:2 (1996), 730–732
[18] Trenogin V.A., “Invertibility of nonlinear operators and parameter continuation method”, Spectral and Scattering Theory, ed. Ramm A.G., Plenum Press, New York, NY–London, 1998, 189–197 | DOI
[19] Qin Y., Integral and Discrete Inequalities and Their Applications, v. II, Nonlinear inequalities, Birkhäuser, Cham, 2016, xvi+1072 pp. | DOI