Keywords: stochastic differential equation, mathematical modeling, Monte Carlo method.
@article{UZKU_2024_166_3_a5,
author = {I. G. Donskoy},
title = {Numerical modeling of the ignition characteristics of a cylindrical heat-generating sample in a medium with stochastic temperature variations},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {343--363},
year = {2024},
volume = {166},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a5/}
}
TY - JOUR AU - I. G. Donskoy TI - Numerical modeling of the ignition characteristics of a cylindrical heat-generating sample in a medium with stochastic temperature variations JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2024 SP - 343 EP - 363 VL - 166 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a5/ LA - ru ID - UZKU_2024_166_3_a5 ER -
%0 Journal Article %A I. G. Donskoy %T Numerical modeling of the ignition characteristics of a cylindrical heat-generating sample in a medium with stochastic temperature variations %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2024 %P 343-363 %V 166 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a5/ %G ru %F UZKU_2024_166_3_a5
I. G. Donskoy. Numerical modeling of the ignition characteristics of a cylindrical heat-generating sample in a medium with stochastic temperature variations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 3, pp. 343-363. http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a5/
[1] Mallick S., Gayen D., “Thermal behaviour and thermal runaway propagation in lithium-ion battery systems – a critical review”, J. Energy Storage, 62 (2023), 106894 | DOI
[2] Fu H., Wang J., Li L., Gong J., Wang X., “Numerical study of mini-channel liquid cooling for suppressing thermal runaway propagation in a lithium-ion battery pack”, Appl. Therm. Eng., 234 (2023), 121349 | DOI
[3] Drewry H.P.G., Seaton N.A., “Continuum random walk simulations of diffusion and reaction in catalyst particles”, AIChE J., 41:4 (1995), 880–893 | DOI
[4] Feres R., Yablonsky G.S., Mueller A., Baernstein A., Zheng X., Gleaves J.T., “Probabilistic analysis of transport-reaction processes over catalytic particles: Theory and experimental testing”, Chem. Eng. Sci., 64:3 (2009), 568–581 | DOI
[5] Zielinski J.M., Petersen E.E., “Monte Carlo simulation of diffusion and chemical reaction in catalyst pores”, AIChE J., 33:12 (1987), 1993–1997 | DOI
[6] Garmory A., Richardson E.S., Mastorakos E., “Micromixing effects in a reacting plume by the Stochastic Fields method”, Atmos. Environ, 40:6 (2006), 1078–1091 | DOI
[7] Ghoniem A.F., Oppenheim A.K., “Numerical solution for the problem of flame propagation by the random element method”, AIAA J., 22:10 (1984), 1429–1435 | DOI
[8] Betev A.S., Kiverin A.D., Medvedev S.P., Yakovenko I.S., “Numerical simulation of turbulent hydrogen combustion regimes near the lean limit”, Russ. J. Phys. Chem., 14:6 (2020), 940–945 | DOI | DOI
[9] Tunér M., Stochastic reactor models for engine simulations, Doctoral Thesis, Lund Univ., Lund, 2008, 194 pp.
[10] Keil F.J., “Diffusion and reaction in porous networks”, Catal. Today, 53:2 (1999), 245–258 | DOI
[11] Zhdanov V.P., Kasemo B., “Simulations of the reaction kinetics on nanometer supported catalyst particles”, Surf. Sci. Rep., 39:2–4 (2000), 25–104 | DOI
[12] Kerstein A.R., Edwards B.F., “Percolation model for simulation of char oxidation and fragmentation time-histories”, Chem. Eng. Sci., 42:7 (1987), 1629–1634 | DOI
[13] Grinchuk P.S., “Combustion of heterogeneous systems with a stochastic spatial structure near the propagation limits”, J. Eng. Phys. Thermophys., 86:4 (2013), 875–887 | DOI
[14] Xin H., Wang C., Louw E., Wang D., Mathews J.P., “Atomistic simulation of coal char isothermal oxy-fuel combustion: Char reactivity and behavior”, Fuel, 182 (2016), 935–943 | DOI
[15] Panga M.K.R., Ziauddin M., Balakotaiah V., “Two-scale continuum model for simulation of wormholes in carbonate acidization”, AIChE J., 51:12 (2005), 3231–3248 | DOI
[16] Baras F., Nicolis G., Mansour M.M., Turner J.W., “Stochastic theory of adiabatic explosion”, J. Stat. Phys., 32:1 (1983), 1–23 | DOI
[17] de Pasquale F., Mecozzi A., “Theory of chemical fluctuations in thermal explosions”, Phys. Rev. A, 31:4 (1985), 2454 | DOI
[18] Fernandez A., “Theory of scaling for fluctuations in thermal explosion conditions”, Ber. Bunsenges. Phys. Chem., 91:2 (1987), 159–163 | DOI
[19] Frankowicz M., Nicolis G., “Transient evolution towards a unique stable state: Stochastic analysis of explosive behavior in a chemical system”, J. Stat. Phys., 3:3 (1983), 595–609 | DOI
[20] Frankowicz M., Mansour M.M., Nicolis G., “Stochastic analysis of explosive behaviour: A qualitative approach”, Physica, 125:1 (1984), 237–246 | DOI
[21] van Kampen N.G., “Intrinsic fluctuations in explosive reactions”, J. Stat. Phys., 46:5 (1987), 933–948 | DOI
[22] Vlad M.O., Ross J., “A stochastic approach to nonequilibrium chain reactions in disordered systems: Breakdown of eikonal approximation”, Int. J. Thermophys., 18:4 (1997), 957–975 | DOI
[23] Gorecki J., Popielawski J., “On the stochastic theory of adiabatic thermal explosion in small systems - numerical results”, J. Stat. Phys., 44:5 (1986), 941–954 | DOI
[24] Zheng Q., Ross J., “Comparison of deterministic and stochastic kinetics for nonlinear systems”, J. Chem. Phys., 94:5 (1991), 3644–3648 | DOI
[25] Chou D.-P., Lackner T., Yip S., “Fluctuation effects in models of adiabatic explosion”, J. Stat. Phys., 69:1 (1992), 193–215 | DOI
[26] Nowakowski B., Lemarchand A., “Thermal explosion near bifurcation: Stochastic features of ignition”, Phys. A, 311:1–2 (2002), 80–96 | DOI
[27] Lemarchand A., Nowakowski B., “Fluctuation-induced and nonequilibrium-induced bifurcations in a thermochemical system”, Mol. Simul., 30:11–12 (2004), 773–780 | DOI
[28] Buevich Yu.A., Fedotov S.P., “Formation of heterogeneous reaction regimes under the action of multiplicative noise”, J. Eng. Phys., 53:5 (1987), 1302–1306 | DOI
[29] Wei J., “Irreversible thermodynamics in engineering”, Ind. Eng. Chem., 58:10 (1966), 55–60 | DOI
[30] van der Broeck C., Parrondo J.M.R., Toral R., Kawai R., “Nonequilibrium phase transitions induced by multiplicative noise”, Phys. Rev. E, 55:4 (1997), 4084 | DOI
[31] Bedeaux D., Pagonabarraga I., Ortiz de Zárate J.M., Sengers J.V., Kjelstrup S., “Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion”, Phys. Chem. Chem. Phys., 12 (2010), 12780–12793 | DOI
[32] Bochkov G.N., Orlov A.L., Kolpashchikov V.L., “Fluctuation-dissipation models of mass transfer in systems with chemical reactions”, Int. Commun. Heat Mass Transfer, 12:1 (1985), 33–43 | DOI
[33] Schmiedl T., Seifert U., “Stochastic thermodynamics of chemical reaction networks”, J. Chem. Phys., 126 (2007), 044101 | DOI
[34] Ge H., Qian H., “Mathematical formalism of nonequilibrium thermodynamics for nonlinear chemical reaction systems with general rate law”, J. Stat. Phys., 166:1 (2017), 190–209 | DOI
[35] Darvey I.G., Staff P.J., “Stochastic approach to first-order chemical reaction kinetics”, J. Chem. Phys., 44 (1966), 990–997 | DOI
[36] van Kampen N.G., “The equilibrium distribution of a chemical mixture”, Phys. Lett. A, 59:5 (1976), 333–334 | DOI
[37] Gillespie D.T., “Stochastic simulation of chemical kinetics”, Annu. Rev. Phys. Chem., 58 (2007), 35–55 | DOI
[38] Higham D.J., “Modeling and simulating chemical reactions”, SIAM Rev., 50:2 (2008), 347–368 | DOI
[39] Sandu A., “A new look at the chemical master equation”, Numer. Algorithms, 65:3 (2014), 485–498 | DOI
[40] Schlögl F., “Stochastic measures in nonequilibrium thermodynamics”, Phys. Rep., 62:4 (1980), 267–380 | DOI
[41] Montefusco A., Peletier M.A., Öttinger H.C., “A framework of nonequilibrium statistical mechanics. II. Coarse-graining”, J. Non-Equilib. Thermodyn., 46:1 (2021), 15–33 | DOI
[42] Fernández A., Rabitz H., “The scaling of nonequilibrium fluctuations in gaseous thermal explosions”, Ber. Bunsenges. Phys. Chem., 92:6 (1988), 754–760 | DOI
[43] Baer M.R., Gartling D.K., Desjardin P.E., “Probabilistic models for reactive behaviour in heterogeneous condensed phase media”, Combust. Theory Modell., 16:1 (2012), 75–106 | DOI
[44] Fedotov S.P., “Stochastic analysis of the thermal ignition of a distributed explosive system”, Phys. Lett. A, 176:3–4 (1993), 220–224 | DOI
[45] Baratti R., Tronci S., Schaum A., Alvarez J., “Dynamics of nonlinear chemical process with multiplicative stochastic noise”, IFAC-PapersOnLine, 49:7 (2016), 869–874 | DOI
[46] Schaum A., Tronci S., Baratti R., Alvarez J., “On the dynamics and robustness of the chemostat with multiplicative noise”, IFAC-PapersOnLine, 54:3 (2021), 342–347 | DOI
[47] Leicher J., Wirtz S., Scherer V., “Evaluation of an entropy-based combustion model using stochastic reactors”, Chem. Eng. Technol., 31:7 (2008), 964–970 | DOI
[48] Rao N.J., Ramkrishna D., Borwanker J.D., “Nonlinear stochastic simulation of stirred tank reactors”, Chem. Eng. Sci., 29:5 (1974), 1193–1204 | DOI
[49] Alvarez J., Baratti R., “On the closed-loop stochastic dynamics of two-state nonlinear exothermic CSTRs with PI temperature control”, Comput. Chem. Eng., 174 (2023), 108246 | DOI
[50] Oberlack M., Arlitt R., Peters N., “On stochastic Damköhler number variations in a homogeneous flow reactor”, Combust. Theory Modell., 4:4 (2000), 495–509 | DOI
[51] Bashkirtseva I., “Controlling the stochastic sensitivity in thermochemical systems under incomplete information”, Kybernetika, 54:1 (2018), 96–109 | DOI
[52] Calverley E.M., Witt P.M., Sweeney J.D., “Reactor runaway due to statistically driven axial activity variations in graded catalyst beds”, Chem. Eng. Sci., 80 (2012), 393–401 | DOI
[53] Ganzer G., Freund H., “Influence of statistical activity variations in diluted catalyst beds on the thermal reactor behavior: Derivation of an a priori criterion”, Chem. Eng. Sci., 220 (2020), 115607 | DOI
[54] Curl R.L., “Dispersed phase mixing: I. Theory and effects in simple reactors”, AIChE J., 9:2 (1963), 175–181 | DOI
[55] Kerstein A.R., “One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows”, J. Fluid Mech., 392 (1999), 277–334 | DOI
[56] Correa S.M., “Turbulence-chemistry interactions in the intermediate regime of premixed combustion”, Combust. Flame, 93:1–2 (1993), 41–60 | DOI
[57] Iavarone S., Péquin A., Chen Z.X., Doan N.A.K., Swaminathan N., Parente A., “An a priori assessment of the Partially Stirred Reactor (PaSR) model for MILD combustion”, Proc. Combust. Inst., 38:4 (2021), 5403–5414 | DOI
[58] Medvedev V.G., Telegin V.G., Telegin G.G., “Statistical analysis of kinetics of an adiabatic thermal explosion”, Combust., Explos., Shock Waves, 45:3 (2009), 274–277 | DOI
[59] Tomlin A.S., Turányi T., “Investigation and improvement of reaction mechanisms using sensitivity analysis and optimization”, Cleaner Combustion: Developing Detailed Chemical Kinetic Models, Green Energy and Technology, eds. F. Battin-Leclerc, J.M. Simmie, E. Blurock, Springer, London, 2013, 411–445 | DOI
[60] Gel A., Chaudhari K., Turton R., Nicoletti P., “Application of uncertainty quantification methods for coal devolatilization kinetics in gasifier modeling”, Powder Technol., 265 (2014), 66–75 | DOI
[61] Fischer M., Vignes A., “An imprecise Bayesian approach to thermal runaway probability”, Proc. 12th Int. Symp. on Imprecise Probability: Theories and Applications, Proceedings of Machine Learning Research (PMLR), 147, 2021, 150–160
[62] Derevich I.V., “Effect of temperature fluctuations of fluid on thermal stability of particles with exothermic chemical reaction”, Int. J. Heat Mass Transfer, 53:25–26 (2010), 5920–5932 | DOI
[63] Derevich I., Galdina D., “Simulation of thermal explosion of catalytic granule in fluctuating temperature field”, J. Appl. Math. Phys., 1:5 (2013), 1–7 | DOI
[64] Derevich I.V., Ermolaev V.S., Mordkovich V.Z., Solomonik I.G., Fokina A.Yu., “Heat and mass transfer in Fischer–Tropsch catalytic granule with localized cobalt microparticles”, Int. J. Heat Mass Transfer, 121 (2018), 1335–1349 | DOI
[65] Donskoy I.G., Gross E.I., “Numerical analysis of thermal ignition statistics in a stochastic reacting medium”, Inf. Mat. Tekh. Nauke Upr., 2024, no. 1, 66–77 (In Russian) | DOI
[66] Derevich I.V., Klochkov A.K., “Thermal explosion of single particles in a random medium-temperature field”, High Temp., 61:1 (2023), 98–107 | DOI | DOI
[67] Frank-Kamenetskii D.A., Diffusion and Heat Transfer in Chemical Kinetics, Nauka, M., 1987, 502 pp. (In Russian)
[68] Merzhanov A.G., Ozerkovskaya N.I., Shkadinskii K.G., “Dynamics of thermal explosion in the postinduction period”, Combust., Explos. Shock Waves, 35:6 (1999), 660–665 | DOI
[69] Barzykin V.V. Thermal explosion under linear heating, Combust., Explos. Shock Waves, 9:1 (1973), 29–42 | DOI
[70] Novozhilov V., “Thermal explosion in oscillating ambient conditions”, Sci. Rep., 6:1 (2016), 29730 | DOI
[71] Fedotov S.P., “Statistical model of the thermal ignition of a distributed system”, Combust. Flame, 91:1 (1992), 65–70 | DOI
[72] Kloeden P.E., Platen E., Numerical Solution of Stochastic Differential Equations, Stochastic Modelling and Applied Probability, 23, Springer, Berlin–Heidelberg, 1992, xxxvi+636 pp. | DOI
[73] Donskoy I., Thermal explosion problem with a stochastic boundary: quasi-stationary approximation and direct numerical modelling, Research Square. Preprint, 2023 | DOI
[74] Takeno T., “Ignition criterion by thermal explosion theory”, Combust. Flame, 29 (1977), 209–211 | DOI
[75] Wilke S., Schweitzer B., Khateeb S., Al-Hallaj S., “Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study”, J. Power Sources, 340 (2017), 51–59 | DOI
[76] Shahid S., Agelin-Chaab M., “A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries”, Energy Convers. Manage.: X, 16 (2022), 100310 | DOI
[77] Chen M., Sun Q., Li Y., Wu K., Liu B., Peng P., Wang Q., “A thermal runaway simulation on a lithium titanate battery and the battery module”, Energies, 8:1 (2015), 490–500 | DOI
[78] Feng X., He X., Ouyang M., Wang L., Lu L., Ren D., Santhanagopalan S., “A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries”, J. Electrochem. Soc., 165:16 (2018), A3748 | DOI