Pressure wave interaction with fractured porous zone in porous medium
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 3, pp. 331-342 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The propagation of a pressure wave in a porous medium with a fractured porous zone was numerically investigated. The study used a two-velocity model of a porous medium and a three-velocity model of a fractured porous medium. The problem was examined in a two-dimensional formulation, considering cases when a porous medium has a free surface or is unbounded. The fractured porous zone was shown to have either an ellipse- or rectangle-shaped boundary. The influence of such inhomogeneities on the propagation of pressure perturbations was analyzed.
Keywords: porous medium, fractured porous zone, waves, reflection.
@article{UZKU_2024_166_3_a4,
     author = {A. A. Gubaidullin and O. Yu. Boldyreva and D. N. Dudko},
     title = {Pressure wave interaction with fractured porous zone in porous medium},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {331--342},
     year = {2024},
     volume = {166},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a4/}
}
TY  - JOUR
AU  - A. A. Gubaidullin
AU  - O. Yu. Boldyreva
AU  - D. N. Dudko
TI  - Pressure wave interaction with fractured porous zone in porous medium
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 331
EP  - 342
VL  - 166
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a4/
LA  - ru
ID  - UZKU_2024_166_3_a4
ER  - 
%0 Journal Article
%A A. A. Gubaidullin
%A O. Yu. Boldyreva
%A D. N. Dudko
%T Pressure wave interaction with fractured porous zone in porous medium
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 331-342
%V 166
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a4/
%G ru
%F UZKU_2024_166_3_a4
A. A. Gubaidullin; O. Yu. Boldyreva; D. N. Dudko. Pressure wave interaction with fractured porous zone in porous medium. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 3, pp. 331-342. http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a4/

[1] Denneman A.I.M., Drijkoningen G.G., Smeulders D.M.J., Wapenaar K., “Reflection and transmission of waves at a fluid/porous-medium interface”, Geophysics, 67:1 (2002), 282–291 | DOI

[2] Fellah Z.E., Berger S., Lauriks W., Depollier C., Aristegui C., Chapelon J.-Y., “Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence”, J. Acoust. Soc. Am., 113:5 (2003), 2424–2433 | DOI

[3] Kumar R., Kumar S., Miglani A., “Reflection and transmission of plane waves between two different fluid-saturated porous half-spaces”, J. Appl. Mech. Tech. Phys., 52:5 (2011), 773–782 | DOI

[4] Gimaltdinov I.K., Sitdikova L.F., “The dynamics of the sound waves at oblique incidence on the border “porous medium–gas””, Vestn. TyumGU. Ser.: Fiz.-Mat. Model. Neft', Gaz, Energ., 1:2 (2) (2015), 112–123 (In Russian)

[5] Gimaltdinov I.K., Sitdikova L.F., Dmitriev V.L., Levina T.M., Khabeev N.S., Wanqing S., “Reflection of acoustic waves from a porous material at oblique incidence”, J. Eng. Phys. Thermophys., 90:5 (2017), 1043–1052 | DOI

[6] Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N., “Compression pulse propagation in fractured porous medium”, Lobachevskii J. Math., 44:11 (2023), 4987–4993 | DOI

[7] Dai Z.-J., Kuang Z.-B., Zhao S.-X., “Reflection and transmission of elastic waves from the interface of a fluid-saturated forous solid and a double porosity solid”, Transp. Porous Media, 65:2 (2006), 237–264 | DOI

[8] Kumar M., Barak M.S., Kumari M., “Reflection and refraction of plane waves at the boundary of an elastic solid and double-porosity dual-permeability materials”, Pet. Sci., 16:2 (2019), 298–317 | DOI

[9] Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N., “Wave interaction with fractured porous layer in porous medium”, Lobachevskii J. Math., 45:5 (2024), 1971–1979 | DOI

[10] Gubaidullin A.A., Kuchugurina O.Yu., “Propagation of weak perturbations in cracked porous media”, J. Appl. Math. Mech., 63:5 (1999), 769–777 | DOI

[11] Nigmatulin R.I., Dynamics of Multiphase Media, v. 1, CRC Press, 1990, 532 pp.

[12] MacCormack R.W., “The effect of viscosity in hypervelocity impact cratering”, Proc. AIAA Hypervelocity Impact Conf., 1969, AIAA Paper 69-354

[13] Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N., “Numerical simulation of wave propagation in a fractured porous medium”, Lobachevskii J. Math., 43:12 (2022), 3471–3477 | DOI

[14] Gubaidullin A.A., Boldyreva O.Yu., Dudko D.N., “Approach to the numerical study of wave processes in a layered and fractured porous media in a two-dimensional formulation”, Mathematics, 11:1 (2023), 227 | DOI