Positive fixed points of Hammerstein integral operators with degenerate kernel
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 3, pp. 437-449 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Positive fixed points of the Hammerstein integral operators with a degenerate kernel in the space of continuous functions $C[0,1]$ were explored. The problem of determining the number of positive fixed points of the Hammerstein integral operator was reduced to analyzing the positive roots of polynomials with real coefficients. A model on a Cayley tree with nearest-neighbor interactions and with the set $[0,1]$ of spin values was considered. It was proved that a unique translation-invariant Gibbs measure exists for this model.
Keywords: fixed point, Hammerstein integral operator, Cayley tree, Gibbs measure, translation-invariant Gibbs measure.
@article{UZKU_2024_166_3_a11,
     author = {Yu. Kh. Eshkabilov and Sh. D. Nodirov},
     title = {Positive fixed points of {Hammerstein} integral operators with degenerate kernel},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {437--449},
     year = {2024},
     volume = {166},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a11/}
}
TY  - JOUR
AU  - Yu. Kh. Eshkabilov
AU  - Sh. D. Nodirov
TI  - Positive fixed points of Hammerstein integral operators with degenerate kernel
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 437
EP  - 449
VL  - 166
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a11/
LA  - ru
ID  - UZKU_2024_166_3_a11
ER  - 
%0 Journal Article
%A Yu. Kh. Eshkabilov
%A Sh. D. Nodirov
%T Positive fixed points of Hammerstein integral operators with degenerate kernel
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 437-449
%V 166
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a11/
%G ru
%F UZKU_2024_166_3_a11
Yu. Kh. Eshkabilov; Sh. D. Nodirov. Positive fixed points of Hammerstein integral operators with degenerate kernel. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 3, pp. 437-449. http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a11/

[1] Abdou M.A., Badr A.A., “On a method for solving an integral equation in the displacement contact problem”, J. Appl. Math. Comput., 127:1 (2002), 65–78 | DOI

[2] Grimmer R., Liu J.H., “Singular perturbations in viscoelasticity”, Rocky Mt. J. Math., 24:1 (1994), 61–75 | DOI

[3] Keller J.B., Olmstead W.E., “Temperature of nonlinearly radiating semi-infinite solid”, Q. Appl. Math., 29 (1972), 559–566 | DOI

[4] Krasnosel'skii M.A., Zabreiko P.P., Geometrical Methods of Nonlinear Analysis, Grundlehren der mathematischen Wissenschaften, 263, Springer-Verlag, Berlin–Heidelberg–New York, NY–Tokyo, 1984, xx+412 pp. | DOI

[5] Olmstead W.E., Handelsman R.A., “Diffusion in a semi-infinite region with nonlinear surface dissipation”, SIAM Rev., 18:2 (1976), 275–291 | DOI

[6] Abdou M.A., “On the solution of linear and nonlinear integral equation”, J. Appl. Math. Comput., 146:2–3 (2003), 857–871 | DOI

[7] Abdou M.A., El-Borai M.M., El-Kojok M.M., “Toeplitz matrix method and nonlinear integral equation of Hammerstein type”, J. Comput. Appl. Math., 223:2 (2009), 765–776 | DOI

[8] Abdou M.A., El-Sayed W.G., Deebs E.I., “A solution of nonlinear integral equation”, Appl. Math. Comput., 160:1 (2005), 1–14 | DOI

[9] Faraci F., “Existence and multiplicity results for a non linear Hammerstein integral equation”, Variational Analysis and Applications, Nonconvex Optimization and Its Applications, 79, eds. Giannessi F., Maugeri A., Springer, Boston, MA, 2005, 359–371 | DOI

[10] Horvat-Marc A., “Positive solutions for nonlinear integral equations of Hammerstein type”, Carpathian J. Math., 24:2 (2008), 54–62

[11] Appell J.A., De Pascale E., Zabrejko P.P., “On the unique solvability of Hammerstein integral equations with non-symmetric kernels”, Recent Trends in Nonlinear Analysis, Progress in Nonlinear Differential Equations and Their Applications, 40, ed. Appell J., Birkhäuser, Basel, 2000, 27–34 | DOI

[12] Appell J., Kalitvin A.S., “Existence results for integral equations: Spectral methods vs. fixed point theory”, Fixed Point Theory, 7:2 (2006), 219–234

[13] Bugajewski D., “On BV-solutions of some nonlinear integral equations”, Integr. Equations Oper. Theory, 46:4 (2003), 387–398 | DOI

[14] Milojević P.S., “Solvability and the number of solutions of Hammerstein equations”, Electron. J. Differ. Equations, 2004, no. 54, 1–25

[15] Eshkabilov Yu.Kh., Nodirov Sh.D., Haydarov F.H., “Positive fixed points of quadratic operators and Gibbs measures”, Positivity, 20:4 (2016), 929–943 | DOI

[16] Eshkabilov Yu.Kh., Nodirov Sh.D., “Positive fixed points of cubic operators on $\mathbb{R}^2$ and Gibbs measures”, J. Sib. Fed. Univ. Math. Phys., 12:6 (2019), 663–673 | DOI

[17] Eshkabilov Yu.Kh., Nodirov Sh.D., “On the positive fixed points of quartic operators”, Bull. Inst. Math., 2020, no. 3, 27–36

[18] Prasolov V.V., Polynomials, Algorithms and Computation in Mathematics, 11, Springer, 2000, xiii+301 pp. | DOI

[19] Rozikov U.A., Eshkabilov Yu.Kh., “On models with uncountable set of spin values on a Cayley tree: Integral equations”, Math. Phys., Anal. Geom., 13:3 (2010), 275–286 | DOI

[20] Rozikov U.A., Gibbs Measures on Cayley Trees, World Sci. Publ., Singapore, 2013, 404 pp. | DOI

[21] Georgii H.-O., Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics, 9, De Gruyter, Berlin–New York, NY, 2011, 545 pp. | DOI

[22] Eshkabilov Yu.Kh., Haydarov F.H., Rozikov U.A., “Non-uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, J. Stat. Phys., 147:4 (2012), 779–794 | DOI

[23] Eshkabilov Yu.Kh., Haydarov F.H., Rozikov U.A., “Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, Math. Phys., Anal. Geom., 16:1 (2013), 1–17 | DOI