@article{UZKU_2024_166_3_a10,
author = {L. U. Sultanov and I. R. Garifullin},
title = {Vibrations of plates and shells with attached mass},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {426--436},
year = {2024},
volume = {166},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a10/}
}
TY - JOUR AU - L. U. Sultanov AU - I. R. Garifullin TI - Vibrations of plates and shells with attached mass JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2024 SP - 426 EP - 436 VL - 166 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a10/ LA - ru ID - UZKU_2024_166_3_a10 ER -
%0 Journal Article %A L. U. Sultanov %A I. R. Garifullin %T Vibrations of plates and shells with attached mass %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2024 %P 426-436 %V 166 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a10/ %G ru %F UZKU_2024_166_3_a10
L. U. Sultanov; I. R. Garifullin. Vibrations of plates and shells with attached mass. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 3, pp. 426-436. http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a10/
[1] Volmir A.S., Nonlinear Dynamics of Plates and Shells, Nauka, M., 1972, 432 pp. (In Russian)
[2] Grigorenko A.Ya., “Numerical solution of the nonlinear free vibrations of a plate”, Sov. Appl. Mech., 19:10 (1983), 902–905 | DOI
[3] Kubenko V.D., Koval'chuk P.S., Podchasov N.P., Nonlinear Vibrations of Cylindrical Shells, Vyshch. Shk., Kyiv, 1989, 208 pp. (In Russian)
[4] Kozlov S.V., “Determination of the natural frequencies and mode configurations for small vibrations of an orthotropic cylindrical shell with attached masses”, Sov. Appl. Mech., 17:2 (1981), 138–142 | DOI
[5] Seregin S.V., “Numerical and analytical investigation of free vibrations of circular cylindrical shells with added mass linearly distributed along generatrix”, Vychisl. Mekh. Sploshnykh Sred, 7:4 (2014), 378–384 (In Russian) | DOI
[6] Korosteleva D.M., Solov'ev S.I., “Mathematical modeling of eigenvibrations of the shallow shell with an attached oscillator”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165, no. 2, 2023, 153–166 (In Russian) | DOI
[7] Dobryshkin A.Yu., “Oscillations of a rod carrying a small attached mass”, Tr. MAI, 2020, no. 110 (In Russian) | DOI
[8] Papkova I.V., Krysko A.V., Yakovleva T.V., Krysko V.A., “A new shear mathematical model of the vibration of porous functionally graded lamellar accelerometers with attached mass in a temperature field”, Proc. 2023 30th St. Petersburg Int. Conf. on Integrated Navigation Systems, ICINS (St. Petersburg, 2023), 1–4 | DOI
[9] Golovanov A.I., Berezhnoi D.V., The Finite Element Method in the Mechanics of Deformable Solids, State Univ. Kazan, DAS, Kazan, 2001, 300 pp. (In Russian)