Vibrations of plates and shells with attached mass
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 3, pp. 426-436 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of vibrations of plates and shells with a mass attached to the point was solved. A mathematical model was developed based on the hypothesis of nondeformable normals. The latter was used to derive a system of resolvable dynamic equations for the shell with a mass, where the unknowns are the dynamic deflection and stress function. The problem was solved numerically and analytically. In accordance with the boundary conditions, the shell deflection was expressed as double trigonometric series. The transition from the initial dynamic system to the solution of the final system of nonlinear ordinary differential equations was achieved by the Bubnov–Galerkin method. For time integration, the finite difference method was used.
Keywords: plate, shell, attached mass, finite difference method, Bubnov–Galerkin method.
@article{UZKU_2024_166_3_a10,
     author = {L. U. Sultanov and I. R. Garifullin},
     title = {Vibrations of plates and shells with attached mass},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {426--436},
     year = {2024},
     volume = {166},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a10/}
}
TY  - JOUR
AU  - L. U. Sultanov
AU  - I. R. Garifullin
TI  - Vibrations of plates and shells with attached mass
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 426
EP  - 436
VL  - 166
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a10/
LA  - ru
ID  - UZKU_2024_166_3_a10
ER  - 
%0 Journal Article
%A L. U. Sultanov
%A I. R. Garifullin
%T Vibrations of plates and shells with attached mass
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 426-436
%V 166
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a10/
%G ru
%F UZKU_2024_166_3_a10
L. U. Sultanov; I. R. Garifullin. Vibrations of plates and shells with attached mass. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 3, pp. 426-436. http://geodesic.mathdoc.fr/item/UZKU_2024_166_3_a10/

[1] Volmir A.S., Nonlinear Dynamics of Plates and Shells, Nauka, M., 1972, 432 pp. (In Russian)

[2] Grigorenko A.Ya., “Numerical solution of the nonlinear free vibrations of a plate”, Sov. Appl. Mech., 19:10 (1983), 902–905 | DOI

[3] Kubenko V.D., Koval'chuk P.S., Podchasov N.P., Nonlinear Vibrations of Cylindrical Shells, Vyshch. Shk., Kyiv, 1989, 208 pp. (In Russian)

[4] Kozlov S.V., “Determination of the natural frequencies and mode configurations for small vibrations of an orthotropic cylindrical shell with attached masses”, Sov. Appl. Mech., 17:2 (1981), 138–142 | DOI

[5] Seregin S.V., “Numerical and analytical investigation of free vibrations of circular cylindrical shells with added mass linearly distributed along generatrix”, Vychisl. Mekh. Sploshnykh Sred, 7:4 (2014), 378–384 (In Russian) | DOI

[6] Korosteleva D.M., Solov'ev S.I., “Mathematical modeling of eigenvibrations of the shallow shell with an attached oscillator”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165, no. 2, 2023, 153–166 (In Russian) | DOI

[7] Dobryshkin A.Yu., “Oscillations of a rod carrying a small attached mass”, Tr. MAI, 2020, no. 110 (In Russian) | DOI

[8] Papkova I.V., Krysko A.V., Yakovleva T.V., Krysko V.A., “A new shear mathematical model of the vibration of porous functionally graded lamellar accelerometers with attached mass in a temperature field”, Proc. 2023 30th St. Petersburg Int. Conf. on Integrated Navigation Systems, ICINS (St. Petersburg, 2023), 1–4 | DOI

[9] Golovanov A.I., Berezhnoi D.V., The Finite Element Method in the Mechanics of Deformable Solids, State Univ. Kazan, DAS, Kazan, 2001, 300 pp. (In Russian)