$\mathbb R$-linear conjugation problem on the unit circle in the parabolic case
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 2, pp. 250-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A solution to the $\mathbb R$-linear conjugation problem (Markushevich boundary value problem) on the unit circle was proposed. This problem is analogous to the vector-matrix Riemann boundary value problem with the coefficient degenerating in the parabolic case (the coefficient is a triangular matrix function). A complete description of the factorization of the matrix coefficient was provided. Its partial indices were calculated. The method used is based on G.N. Chebotarev’s algorithm and has been developed in a series of author's articles. The resulting factorization confirms the solvability of the $\mathbb R$-linear conjugation problem on the unit circle in the parabolic case.
Keywords: $\mathbb R$-linear conjugation, parabolic case, factorization of matrix functions, partial index.
Mots-clés : G.N. Chebotarev’s algorithm
@article{UZKU_2024_166_2_a8,
     author = {S. V. Rogozin and L. P. Primachuk and M. V. Dubatovskaya},
     title = {$\mathbb R$-linear conjugation problem on the unit circle in the parabolic case},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {250--261},
     year = {2024},
     volume = {166},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a8/}
}
TY  - JOUR
AU  - S. V. Rogozin
AU  - L. P. Primachuk
AU  - M. V. Dubatovskaya
TI  - $\mathbb R$-linear conjugation problem on the unit circle in the parabolic case
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 250
EP  - 261
VL  - 166
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a8/
LA  - ru
ID  - UZKU_2024_166_2_a8
ER  - 
%0 Journal Article
%A S. V. Rogozin
%A L. P. Primachuk
%A M. V. Dubatovskaya
%T $\mathbb R$-linear conjugation problem on the unit circle in the parabolic case
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 250-261
%V 166
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a8/
%G ru
%F UZKU_2024_166_2_a8
S. V. Rogozin; L. P. Primachuk; M. V. Dubatovskaya. $\mathbb R$-linear conjugation problem on the unit circle in the parabolic case. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 2, pp. 250-261. http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a8/

[1] Markushevich A.I., “On a boundary value problem of analytic function theory”, Uch. Zap. Mosk. Univ., 1:100 (1946), 20–30 (In Russian)

[2] Mityushev V.V., “$\mathbb{R}$-linear and Riemann–Hilbert problems for multiply connected domains”, Advances in Applied Analysis, Trends in Mathematics, eds. Rogosin S.V., Koroleva A.A., Birkhäuser, Basel, 2012, 147–176 | DOI

[3] Drygaš P., Gluzman S., Mityushev V., Nawalaniec W., Applied Analysis of Composite Media: Analytical and Computational Results for Materials Scientists and Engineers, Woodhead Publishing Series in Composites Science and Engineering, Woodhead Publ., Cambridge, 2020, 372 pp. | DOI

[4] Mityushev V.V., Rogosin S.V., Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions: Theory and Applications, Monographs and Surveys in Pure and Applied Mathematics, 108, Chapman $\$ Hall/CRC, Boca Raton, FL–London–New York, NY–Washington, DC, 1999, 296 pp.

[5] Vekua I.N., Some General Methods of Constructing Various Versions of the Shell Theory, Nauka, M., 1982, 286 pp. (In Russian)

[6] Gakhov F.D., Boundary Value Problems, 3rd ed., Nauka, M., 1977, 640 pp. (In Russian)

[7] Mikhailov L.G., “The general conjugation problem for analytic functions and its applications”, Izv. Akad. Nauk SSSR, Ser. Mat., 27:5 (1963), 969–992 (In Russian)

[8] Bojarski B., “On generalized Hilbert boundary value problem”, Soobshch. Akad. Nauk Gruz. SSR, 25:4 (1960), 385–390 (In Russian)

[9] Sabitov I.Kh., “A general boundary value problem for the linear conjugate on the circle”, Sib. Mat. Zh., 5:1 (1964), 124–129 (In Russian)

[10] Litvinchuk G.S., Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Mathematics and Its Applications, 523, Kluwer Acad. Publ., Dordrecht, 2000, xvi+378 pp. | DOI

[11] Litvinchuk G.S., “Two theorems on the stability of the partial indices of Riemann boundary value problem and their application”, Izv. Vyssh. Uchebn. Zaved., Mat., 1967, no. 12, 47–57 (In Russian)

[12] Litvinchuk G.S., Spitkovskii I.M., Factorization of Measurable Matrix Functions, Operator Theory: Advances and Applications, 25, ed. Heinig G., Birkhäuser, Basel, 1987, 372 pp. | DOI

[13] Rogosin S.V., Mishuris G., “Constructive methods for factorization of matrix-functions”, IMA J. Appl. Math., 81:2 (2016), 365–391 | DOI

[14] Kisil A.V., Abrachams I.D., Mishuris G., Rogosin S.V., “The Wiener–Hopf technique, its generalizations and applications: Constructive and approximate methods”, Proc. R. Soc. A, 2021, no. 2254, 20210533 | DOI

[15] Adukov V.M., “Wiener–Hopf factorization of meromorphic matrix functions”, St. Petersburg Math. J., 4:1 (1993), 51–69

[16] Adukov V.M., “Wiener-Hopf factorization of piecewise meromorphic matrix-valued functions”, Sb.: Math., 200:8 (2009), 1105–1126 | DOI | DOI

[17] Câmara M.C., Malheiro M.T., “Meromorphic factorization revisited and application to some groups of matrix functions”, Compl. Anal. Oper. Theory, 2:2 (2008), 299–326 | DOI

[18] Chebotarev G.N., “Partial indices for the Riemann boundary value problem with a triangular matrix of the second order”, Usp. Mat. Nauk, 11:3 (69) (1956), 192–202 (In Russian)

[19] Primachuk L., Rogosin S.V., “Factorization of triangular matrix-functions of an arbitrary order”, Lobachevskii J. Math., 39:6 (2018), 809–817 | DOI

[20] Bojarski B., “Stability of the Hilbert problem for a holomorphic vector”, Soobshch. Akad. Nauk Gruz. SSR, 21:4 (1958), 391–398 (In Russian)

[21] Gokhberg I.Ts., Krein M.G., “On the stable system of partial indices in the Hilbert problem for many unknown functions”, Dokl. Akad. Nauk SSSR, 119:5 (1958), 854–857 (In Russian)

[22] Gokhberg I.Ts., Krein M.G., “Systems of integral equations on the half-line with kernels depending on the difference of the arguments”, Usp. Mat. Nauk, 13:2 (80) (1958), 3–72 (In Russian)

[23] Mishuris G., Rogosin S., “Approximate factorization of a class of matrix-function with unstable set of partial indices”, Proc. R. Soc. A, 474:2209 (2018), 20170279 | DOI

[24] Litvinchuk G.S., Spitkovskii I.M., “Sharp estimates of defect numbers of a generalized Riemann boundary value problem, factorization of Hermitian matrix-valued functions and some problems of approximation by meromorphic functions”, Math. USSR – Sb., 45:2 (1983), 205–224 | DOI

[25] Muskhelishvili N.I., Singular Integral Equations, 3rd ed., Nauka, M., 1968, 512 pp. (In Russian)