Nonlinear aeroelastic oscillations in the wall of a flat channel filled with viscous gas and resting on a vibrating foundation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 2, pp. 220-237 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article considers the problem of aeroelastic oscillations in the channel wall having a suspension with hardening cubic nonlinearity, which were induced by the vibration of the channel foundation. The narrow flat channel formed by two parallel rigid walls and filled with pulsating viscous gas was examined. The bottom wall was stationary, while the opposite one had a nonlinear elastic suspension. The aeroelasticity problem was formulated for the isothermal state of the gas and channel walls. Considering the narrowness of the channel, the equations of dynamics were derived for a thin layer of the viscous gas, and the asymptotic analysis of the problem was performed by the perturbation method. Using the method of iterations, the law of viscous gas pressure distribution in the channel was determined, and the equation of aeroelastic oscillations in the channel wall was obtained as a generalization of the Duffing equation. This equation was solved by the harmonic balance method. The primary nonlinear aeroelastic response of the channel wall and the nonlinear phase shift were expressed as implicit functions. These characteristics were studied numerically to evaluate the influence of the nonlinear elastic suspension of the channel wall and the viscous gas inertia and compressibility on the nonlinear oscillations in the channel wall.
Keywords: nonlinear aeroelastic oscillation, elastically fixed wall, nonlinear elastic suspension, hardening cubic nonlinearity, harmonic balance method, aeroelastic response, phase shift.
Mots-clés : viscous gas, perturbation method
@article{UZKU_2024_166_2_a6,
     author = {V. S. Popov and A. A. Popova},
     title = {Nonlinear aeroelastic oscillations in the wall of a flat channel filled with viscous gas and resting on a vibrating foundation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {220--237},
     year = {2024},
     volume = {166},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a6/}
}
TY  - JOUR
AU  - V. S. Popov
AU  - A. A. Popova
TI  - Nonlinear aeroelastic oscillations in the wall of a flat channel filled with viscous gas and resting on a vibrating foundation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 220
EP  - 237
VL  - 166
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a6/
LA  - ru
ID  - UZKU_2024_166_2_a6
ER  - 
%0 Journal Article
%A V. S. Popov
%A A. A. Popova
%T Nonlinear aeroelastic oscillations in the wall of a flat channel filled with viscous gas and resting on a vibrating foundation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 220-237
%V 166
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a6/
%G ru
%F UZKU_2024_166_2_a6
V. S. Popov; A. A. Popova. Nonlinear aeroelastic oscillations in the wall of a flat channel filled with viscous gas and resting on a vibrating foundation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 2, pp. 220-237. http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a6/

[1] Gorshkov A.G., Morozov V.I., Ponomarev A.T., Shklyarchuk F.N., Aerohydroelasticity of Structures, Fizmatlit, M., 2000, 592 pp. (In Russian)

[2] Païdoussis M.P., Fluid-Structure Interactions, v. 2, Slender structures and axial flow, 2nd ed., Acad. Press, London, 2016, xviii+923 pp. | DOI

[3] Gromeka I.S., “Wave velocities of fluid in elastic pipes”, Collected Works, Izd. Akad. Nauk SSSR, M., 1952, 172–183 (In Russian)

[4] Joukowsky N.E., Water Hammer in Pipes, Gostekhizdat, M.–L., 1949, 103 pp. (In Russian)

[5] Womersley J.R., “XXIV. Oscillatory motion of a viscous liquid in a thin-walled elastic tube - I: The linear approximation for long waves”, London, Edinburgh, Dublin Philos. Mag. J. Sci., Ser. 7, 46:373 (1955), 199–221 | DOI

[6] Womersley J.R., “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known”, J. Physiol., 127:3 (1955), 553–563 | DOI

[7] Pa{ïdoussis M.P.}, “Dynamics of cylindrical structures in axial flow: A review”, J. Fluids Struct., 107 (2021), 103374 | DOI

[8] Païdoussis M.P., “Pipes conveying fluid: A fertile dynamics problem”, J. Fluids Struct., 114 (2022), 103664 | DOI

[9] Lamb H., “On the vibrations of an elastic plate in contact with water”, Proc. R. Soc. A, 98:690 (1920), 205–216 | DOI

[10] Amabili M., Kwak M.K., “Free vibrations of circular plates coupled with liquids: Revising the Lamb problem”, J. Fluids Struct., 10:7 (1996), 743–761 | DOI

[11] Kozlovsky Y., “Vibration of plates in contact with viscous fluid: Extension of Lamb's model”, J. Sound Vib., 326:1–2 (2009), 332–339 | DOI

[12] Velmisov P.A., Pokladova Yu.V., “Mathematical modelling of the “Pipeline-pressure sensor” system”, J. Phys.: Conf. Ser., 1353 (2019), 012085 | DOI

[13] Kamenskikh A.O., Lekomtsev S.V., “Control of hydro-elastic vibrations of two parallel plates by electromagnetic coil”, AIP Conf. Proc., 2239 (2020), 020020 | DOI

[14] Indeitsev D.A., Osipova E.V., “Nonlinear effects in trapped modes of standing waves on the surface of shallow water”, Tech. Phys., 45:12 (2000), 1513–1517 | DOI

[15] Shevtsova E.V., “Gas damping in micromechanical instruments”, Vestn. MGTU im. N.E. Baumana. Ser. Priborostr., 2006, no. 2 (63), 100–111 (In Russian)

[16] Qin Z., Podchezertsev V.P., “Influence of design features and gas filling parameters on dynamically tuned gyroscope characteristics”, Vestn. MGTU im. N.E. Baumana. Ser. Priborostr., 2017, no. 2 (113), 4–20 | DOI

[17] Mukutadze M.A., Khasyanova D.U., “Optimization of the supporting surface of a slider bearing according to the load-carrying capacity taking into account the lubricant viscosity depending on pressure and temperature”, J. Mach. Manuf. Reliab., 47:4 (2018), 356–361 | DOI | DOI

[18] Turchak L.I., Shidlovskii V.P., “Mathematical modeling of gas lubrication problems”, Comput. Math. Math. Phys., 51:2 (2011), 308–325 | DOI

[19] Raeder T., Tenenev V.A., Chernova A.A., “Numerical simulation of unstable safety valve modes”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68, 141–157 (In Russian) | DOI

[20] Raeder T., Tenenev V.A., Koroleva M.R., Mishchenkova O.V., “Nonlinear processes in safety systems for substances with parameters close to a critical state”, Russ. J. Nonlinear Dyn., 17:1 (2021), 119–138 | DOI

[21] Barulina M., Santo L., Popov V., Popova A., Kondratov D., “Modeling nonlinear hydroelastic response for the endwall of the plane channel due to its upper-wall vibrations”, Mathematics, 10:20 (2022), 3844 | DOI

[22] Popov V.S., Popova A.A., “Modeling of hydroelastic oscillations for a channel wall possessing a nonlinear elastic support”, Komp'yut. Issled. Model., 14:1 (2022), 79–92 (In Russian) | DOI

[23] Popov V.S., Mogilevich L.I., Popova A.A., “Vibrations of the channel wall on a nonlinear elastic suspension under the influence of a pulsating layer of viscous gas located in the channel”, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 66:10 (2023), 821–834 (In Russian)

[24] Panovko Ya.G., Introduction to the Theory of Mechanical Vibrations, Nauka, M., 1991, 256 pp. (In Russian)

[25] Constantinescu V.N., Gas Lubrication, Mashinostroenie, M., 1968, 718 pp. (In Russian)

[26] Loitsyanskii L.G., Mechanics of Liquids and Gases, Drofa, M., 2003, 840 pp. (In Russian)

[27] Vallander S.V., Lectures in Hydroaeromechanics, LGU, L., 1978, 296 pp. (In Russian)

[28] Nayfeh A.H., Mook D.T., Nonlinear Oscillations, Wiley, New York, NY, 1979, xiv+704 pp.

[29] Van Dyke M., Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, CA, 1975, xiv+271 pp.

[30] Krack M., Gross J., Harmonic Balance for Nonlinear Vibration Problems, Mathematical Engineering, eds. Schröder J., Weigand B., Springer, New York, NY, 2019, xii+159 pp. | DOI