Mots-clés : viscous gas, perturbation method
@article{UZKU_2024_166_2_a6,
author = {V. S. Popov and A. A. Popova},
title = {Nonlinear aeroelastic oscillations in the wall of a flat channel filled with viscous gas and resting on a vibrating foundation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {220--237},
year = {2024},
volume = {166},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a6/}
}
TY - JOUR AU - V. S. Popov AU - A. A. Popova TI - Nonlinear aeroelastic oscillations in the wall of a flat channel filled with viscous gas and resting on a vibrating foundation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2024 SP - 220 EP - 237 VL - 166 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a6/ LA - ru ID - UZKU_2024_166_2_a6 ER -
%0 Journal Article %A V. S. Popov %A A. A. Popova %T Nonlinear aeroelastic oscillations in the wall of a flat channel filled with viscous gas and resting on a vibrating foundation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2024 %P 220-237 %V 166 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a6/ %G ru %F UZKU_2024_166_2_a6
V. S. Popov; A. A. Popova. Nonlinear aeroelastic oscillations in the wall of a flat channel filled with viscous gas and resting on a vibrating foundation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 2, pp. 220-237. http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a6/
[1] Gorshkov A.G., Morozov V.I., Ponomarev A.T., Shklyarchuk F.N., Aerohydroelasticity of Structures, Fizmatlit, M., 2000, 592 pp. (In Russian)
[2] Païdoussis M.P., Fluid-Structure Interactions, v. 2, Slender structures and axial flow, 2nd ed., Acad. Press, London, 2016, xviii+923 pp. | DOI
[3] Gromeka I.S., “Wave velocities of fluid in elastic pipes”, Collected Works, Izd. Akad. Nauk SSSR, M., 1952, 172–183 (In Russian)
[4] Joukowsky N.E., Water Hammer in Pipes, Gostekhizdat, M.–L., 1949, 103 pp. (In Russian)
[5] Womersley J.R., “XXIV. Oscillatory motion of a viscous liquid in a thin-walled elastic tube - I: The linear approximation for long waves”, London, Edinburgh, Dublin Philos. Mag. J. Sci., Ser. 7, 46:373 (1955), 199–221 | DOI
[6] Womersley J.R., “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known”, J. Physiol., 127:3 (1955), 553–563 | DOI
[7] Pa{ïdoussis M.P.}, “Dynamics of cylindrical structures in axial flow: A review”, J. Fluids Struct., 107 (2021), 103374 | DOI
[8] Païdoussis M.P., “Pipes conveying fluid: A fertile dynamics problem”, J. Fluids Struct., 114 (2022), 103664 | DOI
[9] Lamb H., “On the vibrations of an elastic plate in contact with water”, Proc. R. Soc. A, 98:690 (1920), 205–216 | DOI
[10] Amabili M., Kwak M.K., “Free vibrations of circular plates coupled with liquids: Revising the Lamb problem”, J. Fluids Struct., 10:7 (1996), 743–761 | DOI
[11] Kozlovsky Y., “Vibration of plates in contact with viscous fluid: Extension of Lamb's model”, J. Sound Vib., 326:1–2 (2009), 332–339 | DOI
[12] Velmisov P.A., Pokladova Yu.V., “Mathematical modelling of the “Pipeline-pressure sensor” system”, J. Phys.: Conf. Ser., 1353 (2019), 012085 | DOI
[13] Kamenskikh A.O., Lekomtsev S.V., “Control of hydro-elastic vibrations of two parallel plates by electromagnetic coil”, AIP Conf. Proc., 2239 (2020), 020020 | DOI
[14] Indeitsev D.A., Osipova E.V., “Nonlinear effects in trapped modes of standing waves on the surface of shallow water”, Tech. Phys., 45:12 (2000), 1513–1517 | DOI
[15] Shevtsova E.V., “Gas damping in micromechanical instruments”, Vestn. MGTU im. N.E. Baumana. Ser. Priborostr., 2006, no. 2 (63), 100–111 (In Russian)
[16] Qin Z., Podchezertsev V.P., “Influence of design features and gas filling parameters on dynamically tuned gyroscope characteristics”, Vestn. MGTU im. N.E. Baumana. Ser. Priborostr., 2017, no. 2 (113), 4–20 | DOI
[17] Mukutadze M.A., Khasyanova D.U., “Optimization of the supporting surface of a slider bearing according to the load-carrying capacity taking into account the lubricant viscosity depending on pressure and temperature”, J. Mach. Manuf. Reliab., 47:4 (2018), 356–361 | DOI | DOI
[18] Turchak L.I., Shidlovskii V.P., “Mathematical modeling of gas lubrication problems”, Comput. Math. Math. Phys., 51:2 (2011), 308–325 | DOI
[19] Raeder T., Tenenev V.A., Chernova A.A., “Numerical simulation of unstable safety valve modes”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68, 141–157 (In Russian) | DOI
[20] Raeder T., Tenenev V.A., Koroleva M.R., Mishchenkova O.V., “Nonlinear processes in safety systems for substances with parameters close to a critical state”, Russ. J. Nonlinear Dyn., 17:1 (2021), 119–138 | DOI
[21] Barulina M., Santo L., Popov V., Popova A., Kondratov D., “Modeling nonlinear hydroelastic response for the endwall of the plane channel due to its upper-wall vibrations”, Mathematics, 10:20 (2022), 3844 | DOI
[22] Popov V.S., Popova A.A., “Modeling of hydroelastic oscillations for a channel wall possessing a nonlinear elastic support”, Komp'yut. Issled. Model., 14:1 (2022), 79–92 (In Russian) | DOI
[23] Popov V.S., Mogilevich L.I., Popova A.A., “Vibrations of the channel wall on a nonlinear elastic suspension under the influence of a pulsating layer of viscous gas located in the channel”, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 66:10 (2023), 821–834 (In Russian)
[24] Panovko Ya.G., Introduction to the Theory of Mechanical Vibrations, Nauka, M., 1991, 256 pp. (In Russian)
[25] Constantinescu V.N., Gas Lubrication, Mashinostroenie, M., 1968, 718 pp. (In Russian)
[26] Loitsyanskii L.G., Mechanics of Liquids and Gases, Drofa, M., 2003, 840 pp. (In Russian)
[27] Vallander S.V., Lectures in Hydroaeromechanics, LGU, L., 1978, 296 pp. (In Russian)
[28] Nayfeh A.H., Mook D.T., Nonlinear Oscillations, Wiley, New York, NY, 1979, xiv+704 pp.
[29] Van Dyke M., Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, CA, 1975, xiv+271 pp.
[30] Krack M., Gross J., Harmonic Balance for Nonlinear Vibration Problems, Mathematical Engineering, eds. Schröder J., Weigand B., Springer, New York, NY, 2019, xii+159 pp. | DOI