Influence of photoexcitation conditions on the spin polarization of nitrogen-vacancy centers in isotopically enriched silicon carbide $6$H-$^{28}$SiC
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 2, pp. 187-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Spin defects in semiconductors are attracting interest as a material basis for quantum information and computing technologies. In this work, the spin properties of negatively charged nitrogen-vacancy ($NV^{-}$) centers in a $6$H-SiC silicon carbide crystal enriched with the $^{28}$Si isotope were studied by high-frequency ($94$ GHz) electron paramagnetic resonance (EPR) methods. Due to an optical excitation channel at the $NV^{-}$ centers, it was possible to initialize the electron spin of the defect using a laser source, which led to a significant increase in the intensity of the recorded EPR signal. The dependences of the observed spin polarization were analyzed at different optical excitation wavelengths ($\lambda = 640$$1064$ nm), output power ($0$$500$ mW), and temperature ($50$$300$ K) of the crystal. The results obtained reveal the optimal experimental conditions for maximizing the efficiency of optical quantum energy transfer to the spin system. This opens up new possibilities for using $NV^{-}$ centers in $6$H-SiC to create multi-qubit spin-photon interfaces operating in the infrared region.
Keywords: spin-optical property, spin initialization, spin polarization, electron paramagnetic resonance, $NV^{-}$ center.
Mots-clés : silicon carbide
@article{UZKU_2024_166_2_a4,
     author = {F. F. Murzakhanov and G. V. Mamin and M. A. Sadovnikova and D. V. Shurtakova and O. P. Kazarova and E. N. Mokhov and M. R. Gafurov},
     title = {Influence of photoexcitation conditions on the spin polarization of nitrogen-vacancy centers in isotopically enriched silicon carbide $6${H-}$^{28}${SiC}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {187--199},
     year = {2024},
     volume = {166},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a4/}
}
TY  - JOUR
AU  - F. F. Murzakhanov
AU  - G. V. Mamin
AU  - M. A. Sadovnikova
AU  - D. V. Shurtakova
AU  - O. P. Kazarova
AU  - E. N. Mokhov
AU  - M. R. Gafurov
TI  - Influence of photoexcitation conditions on the spin polarization of nitrogen-vacancy centers in isotopically enriched silicon carbide $6$H-$^{28}$SiC
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 187
EP  - 199
VL  - 166
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a4/
LA  - ru
ID  - UZKU_2024_166_2_a4
ER  - 
%0 Journal Article
%A F. F. Murzakhanov
%A G. V. Mamin
%A M. A. Sadovnikova
%A D. V. Shurtakova
%A O. P. Kazarova
%A E. N. Mokhov
%A M. R. Gafurov
%T Influence of photoexcitation conditions on the spin polarization of nitrogen-vacancy centers in isotopically enriched silicon carbide $6$H-$^{28}$SiC
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 187-199
%V 166
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a4/
%G ru
%F UZKU_2024_166_2_a4
F. F. Murzakhanov; G. V. Mamin; M. A. Sadovnikova; D. V. Shurtakova; O. P. Kazarova; E. N. Mokhov; M. R. Gafurov. Influence of photoexcitation conditions on the spin polarization of nitrogen-vacancy centers in isotopically enriched silicon carbide $6$H-$^{28}$SiC. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 2, pp. 187-199. http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a4/

[1] Ladd T.D., Jelezko F., Laflamme R., Nakamura Y., Monroe C., O'Brien J., “Quantum computers”, Nature, 464:7285 (2010), 45–53 | DOI

[2] Weber J.R., Koehl W.F., Varley J.B., Janotti A., Buckley B.B., Van de Walle C.G., Awschalom D.D., “Quantum computing with defects”, Proc. Natl. Acad. Sci. U. S. A, 107:19 (2010), 8513–8518 | DOI

[3] Nandhini S., Singh H., Akash U.N., “An extensive review on quantum computers”, Adv. Eng. Software, 174 (2022), 103337 | DOI

[4] Zhang G., Cheng Y., Chou J.-P., Gali A., “Material platforms for defect qubits and single-photon emitters”, Appl. Phys. Rev., 7:3 (2020), 031308 | DOI

[5] Heremans F.J., Yale C.G., Awschalom D.D., “Control of spin defects in wide-bandgap semiconductors for quantum technologies”, Proc. IEEE, 104:10 (2016), 2009–2023 | DOI

[6] Doherty M.W., Manson N.B., Delaney P., Jelezko F., Wrachtrup J., Hollenberg L.C.L., “The nitrogen-vacancy colour centre in diamond”, Phys. Rep., 528:1 (2013), 1–45 | DOI

[7] von Bardeleben H.J., Cantin J.L., Csóré A., Gali A., Rauls E., Gerstmann U., “NV centers in $3C,4H,$ and $6H$ silicon carbide: A variable platform for solid-state qubits and nanosensors”, Phys. Rev. B, 94:12 (2016), 121202 | DOI

[8] Murzakhanov F.F., Yavkin B.V., Mamin G.V., Orlinskii S.B., Mumdzhi I.E., Gracheva I.N., Gabbasov B.F., Smirnov A.N., Davydov V.Yu., Soltamov V.A., “Creation of negatively charged boron vacancies in hexagonal boron nitride crystal by electron irradiation and mechanism of inhomogeneous broadening of boron vacancy-related spin resonance lines”, Nanomaterials, 11:6 (2021), 1373 | DOI

[9] Mi X., Benito M., Putz S., Zajac D.M., Taylor J.M., Burkard G., Petta J.R., “A coherent spin–photon interface in silicon”, Nature, 555:7698 (2018), 599–603 | DOI

[10] Soltamov V.A., Kasper C., Poshakinskiy A.V., Anisimov A.N., Mokhov E.N., Sperlich A., Tarasenko S.A., Baranov P.G., Astakhov G.V., Dyakonov V., “Excitation and coherent control of spin qudit modes in silicon carbide at room temperature”, Nat. Commun., 10:1 (2019), 1678 | DOI

[11] Bechstedt F., Käckell P., Zywietz A., Karch K., Adolph B., Tenelsen K., Furthmüller J., “Polytypism and properties of silicon carbide”, Phys. Status Solidi B, 202:1 (1997), 35–62 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[12] Weber W.J., Gao F., Devanathan R., Jiang W., Wang C.M., “Ion-beam induced defects and nanoscale amorphous clusters in silicon carbide”, Nucl. Instrum. Methods Phys. Res., Sect. B, 216 (2004), 25–35 | DOI

[13] Khazen K., von Bardeleben H.J., Zargaleh S.A., Cantin J.L., Mu Z., Weibo G., Biktagirov T., Gerstmann U., “High-resolution resonant excitation of NV centers in $6H$-$\mathrm{SiC}$: A matrix for quantum technology applications”, Phys. Rev. B, 100:20 (2019), 205202 | DOI

[14] Murzakhanov F.F., Sadovnikova M.A., Mamin G.V., Nagalyuk S.S., von Bardeleben H.J., Schmidt W.G., Biktagirov T., Gerstmann U., Soltamov V.A., “$^{14}$N Hyperfine and nuclear interactions of axial and basal NV centers in 4H-SiC: A high frequency (94 GHz) ENDOR study”, J. Appl. Phys., 134:12 (2023), 123906 | DOI

[15] Singh L.R., “Site symmetry dependence on luminescence emission of $\mathrm{Y}_2\mathrm{O}_3{:}\mathrm{ Eu}^{3+}$ dispersed in silica matrix”, Mater. Technol., 37:11 (2022), 1906–1913 | DOI

[16] Murzakhanov F.F., Sadovnikova M.A., Gracheva I.N., Mamin G.V., Baibekov E.I., Mokhov E.N., “Exploring the properties of the $V_\mathrm{B}^-$ defect in hBN: Optical spin polarization, Rabi oscillations, and coherent nuclei modulation”, Nanotechnology, 35:15 (2024), 155001 | DOI

[17] Murzakhanov F., Sadovnikova M., Mamin G., Sannikov K., Shakirov A., von Bardeleben H.J., Mokhov E., Nagalyuk S., “Room temperature coherence properties and $^{14}$N nuclear spin readout of $NV$ centers in 4H–SiC”, Appl. Phys. Lett., 124:3 (2024), 034001 | DOI

[18] Son N.T., Ivanov I.G., “Charge state control of the silicon vacancy and divacancy in silicon carbide”, Appl. Phys. Lett., 129:21 (2021), 215702 | DOI