On the linear complexity of generalized cyclotomic sequences with odd period
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 2, pp. 162-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The linear complexity of new generalized cyclotomic sequences with odd period was estimated. The sequences were defined using generalized cyclotomic classes composite modulo. Conditions sufficient for the existence of binary and non-binary sequences with high linear complexity were obtained. The earlier results on the linear complexity of sequences with the period equal to the power of a prime were generalized.
Keywords: generalized cyclotomic sequences, linear complexity.
@article{UZKU_2024_166_2_a2,
     author = {V. A. Edemskiy},
     title = {On the linear complexity of generalized cyclotomic sequences with odd period},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {162--172},
     year = {2024},
     volume = {166},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a2/}
}
TY  - JOUR
AU  - V. A. Edemskiy
TI  - On the linear complexity of generalized cyclotomic sequences with odd period
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 162
EP  - 172
VL  - 166
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a2/
LA  - ru
ID  - UZKU_2024_166_2_a2
ER  - 
%0 Journal Article
%A V. A. Edemskiy
%T On the linear complexity of generalized cyclotomic sequences with odd period
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 162-172
%V 166
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a2/
%G ru
%F UZKU_2024_166_2_a2
V. A. Edemskiy. On the linear complexity of generalized cyclotomic sequences with odd period. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 2, pp. 162-172. http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a2/

[1] Cusick T.W., Ding C., Renvall A., Stream Ciphers and Number Theory, North-Holland Mathematical Library, 55, Suppl. C, Elsevier Sci., Amsterdam, 1998, 431 pp. https://www.sciencedirect.com/bookseries/north-holland-mathematical-library/vol/55/suppl/C

[2] Chen X., Chen Z., Liu H., “A family of pseudorandom binary sequences derived from generalized cyclotomic classes modulo $p^{m+1}q^{n+1}$”, Int. J. Network Secur., 22:4 (2020), 610–620 | DOI

[3] Fan C., Ge G., “A unified approach to Whiteman's and Ding–Helleseth's generalized cyclotomy over residue class rings”, IEEE Trans. Inf. Theory, 60:2 (2014), 1326–1336 | DOI

[4] Hu L., Yue Q., Wang M., “The linear complexity of Whiteman's generalized cyclotomic sequences of period $p^{m+1}q^{n+1}$”, IEEE Trans. Inf. Theory, 58:8 (2012), 5534–5543 | DOI

[5] Zeng X., Cai H., Tang X., Yang Y., “Optimal frequency hopping sequences of odd length”, IEEE Trans. Inf. Theory, 59:5 (2013), 3237–3248 | DOI

[6] Xiao Z., Zeng X., Li C., Helleseth T., “New generalized cyclotomic binary sequences of period $p^2$”, Des. Codes Cryptogr., 86:7 (2018), 1483–1497 | DOI

[7] Edemskiy V., Li C., Zeng X., Helleseth T., “The linear complexity of generalized cyclotomic binary sequences of period $p^n$”, Des. Codes Cryptogr., 87:5 (2019), 1183–1197 | DOI

[8] Ye Z., Ke P., Wu C., “A further study of the linear complexity of new binary cyclotomic sequence of length $p^r$”, Appl. Algebra Eng. Commun. Comput., 30:3 (2019), 217–231 | DOI

[9] Ouyang Y., Xie X., “Linear complexity of generalized cyclotomic sequences of period $2p^m$”, Des. Codes Cryptogr., 87:11 (2019), 2585–2596 | DOI

[10] Edemskiy V., Wu C., “Linear complexity of generalized cyclotomic sequences with period $p^nq^m$”, Arithmetic of Finite Fields, 9th International Workshop, WAIFI 2022, Revised Selected Papers (Chengdu, China, August 29 – September 2, 2022), Lecture Notes in Computer Science, 13638, eds. Mesnager S., Zhou Z., Springer, Cham, 2023, 320–333 | DOI

[11] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Mir, M., 1987, 416 pp. (In Russian)