@article{UZKU_2024_166_2_a2,
author = {V. A. Edemskiy},
title = {On the linear complexity of generalized cyclotomic sequences with odd period},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {162--172},
year = {2024},
volume = {166},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a2/}
}
TY - JOUR AU - V. A. Edemskiy TI - On the linear complexity of generalized cyclotomic sequences with odd period JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2024 SP - 162 EP - 172 VL - 166 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a2/ LA - ru ID - UZKU_2024_166_2_a2 ER -
%0 Journal Article %A V. A. Edemskiy %T On the linear complexity of generalized cyclotomic sequences with odd period %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2024 %P 162-172 %V 166 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a2/ %G ru %F UZKU_2024_166_2_a2
V. A. Edemskiy. On the linear complexity of generalized cyclotomic sequences with odd period. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 2, pp. 162-172. http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a2/
[1] Cusick T.W., Ding C., Renvall A., Stream Ciphers and Number Theory, North-Holland Mathematical Library, 55, Suppl. C, Elsevier Sci., Amsterdam, 1998, 431 pp. https://www.sciencedirect.com/bookseries/north-holland-mathematical-library/vol/55/suppl/C
[2] Chen X., Chen Z., Liu H., “A family of pseudorandom binary sequences derived from generalized cyclotomic classes modulo $p^{m+1}q^{n+1}$”, Int. J. Network Secur., 22:4 (2020), 610–620 | DOI
[3] Fan C., Ge G., “A unified approach to Whiteman's and Ding–Helleseth's generalized cyclotomy over residue class rings”, IEEE Trans. Inf. Theory, 60:2 (2014), 1326–1336 | DOI
[4] Hu L., Yue Q., Wang M., “The linear complexity of Whiteman's generalized cyclotomic sequences of period $p^{m+1}q^{n+1}$”, IEEE Trans. Inf. Theory, 58:8 (2012), 5534–5543 | DOI
[5] Zeng X., Cai H., Tang X., Yang Y., “Optimal frequency hopping sequences of odd length”, IEEE Trans. Inf. Theory, 59:5 (2013), 3237–3248 | DOI
[6] Xiao Z., Zeng X., Li C., Helleseth T., “New generalized cyclotomic binary sequences of period $p^2$”, Des. Codes Cryptogr., 86:7 (2018), 1483–1497 | DOI
[7] Edemskiy V., Li C., Zeng X., Helleseth T., “The linear complexity of generalized cyclotomic binary sequences of period $p^n$”, Des. Codes Cryptogr., 87:5 (2019), 1183–1197 | DOI
[8] Ye Z., Ke P., Wu C., “A further study of the linear complexity of new binary cyclotomic sequence of length $p^r$”, Appl. Algebra Eng. Commun. Comput., 30:3 (2019), 217–231 | DOI
[9] Ouyang Y., Xie X., “Linear complexity of generalized cyclotomic sequences of period $2p^m$”, Des. Codes Cryptogr., 87:11 (2019), 2585–2596 | DOI
[10] Edemskiy V., Wu C., “Linear complexity of generalized cyclotomic sequences with period $p^nq^m$”, Arithmetic of Finite Fields, 9th International Workshop, WAIFI 2022, Revised Selected Papers (Chengdu, China, August 29 – September 2, 2022), Lecture Notes in Computer Science, 13638, eds. Mesnager S., Zhou Z., Springer, Cham, 2023, 320–333 | DOI
[11] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Mir, M., 1987, 416 pp. (In Russian)