Diophantine equation generated by the subfield of a circular field
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 2, pp. 147-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Two forms $f(x,y,z)$ and $g(x,y,z)$ of degree $3$ were constructed, with their values being the norms of numbers in the subfields of degree $3$ of the circular fields $K_{13}$ and $K_{19}$, respectively. Using the decomposition law in a circular field, Diophantine equations $f(x,y,z)=a$ and $g(x,y,z)=b$, where $a,b\in\mathbb{Z},\ a\ne0,\ b\ne 0$ were solved. The assertions that, based on the canonical decomposition of the numbers $a$ и $b$ into prime factors, make it possible to determine whether the equations $f(x,y,z)=a$ and $g(x,y,z)=b$ have solutions were proved.
Keywords: algebraic integer, norm of algebraic number, principal ideal, fundamental basis, decomposition law in circular field
Mots-clés : Galois group, Diophantine equation.
@article{UZKU_2024_166_2_a1,
     author = {I. G. Galyautdinov and E. E. Lavrentyeva},
     title = {Diophantine equation generated by the subfield of a circular field},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {147--161},
     year = {2024},
     volume = {166},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a1/}
}
TY  - JOUR
AU  - I. G. Galyautdinov
AU  - E. E. Lavrentyeva
TI  - Diophantine equation generated by the subfield of a circular field
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 147
EP  - 161
VL  - 166
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a1/
LA  - ru
ID  - UZKU_2024_166_2_a1
ER  - 
%0 Journal Article
%A I. G. Galyautdinov
%A E. E. Lavrentyeva
%T Diophantine equation generated by the subfield of a circular field
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 147-161
%V 166
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a1/
%G ru
%F UZKU_2024_166_2_a1
I. G. Galyautdinov; E. E. Lavrentyeva. Diophantine equation generated by the subfield of a circular field. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 2, pp. 147-161. http://geodesic.mathdoc.fr/item/UZKU_2024_166_2_a1/

[1] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Mir, M., 1987, 416 pp. (In Russian)

[2] Pachev U.M., Kodzokov A.Kh., Ezaova A.G., Tokbaeva A.A., Guchaeva Z.Kh., “On one way to solve linear equations over a Euclidean ring”, Vestn. KRAUNTs. Fiz.-Mat. Nauki, 46:1 (2024), 9–21 (In Russian) | DOI

[3] Buno A.D., “From Diophantine approximations to Diophantine equations”, Prepr. IPM im. M.V. Keldysha, 2016, 001, 20 pp. (In Russian) | DOI

[4] Galyautdinov I.G., Lavrentyeva E.E., “Diophantine equation generated by the maximal subfield of a circular field”, Russ. Math., 64:7 (2020), 38–47 | DOI

[5] Borevich Z.I., Shafarevich I.R., Number Theory, Nauka, M., 1985, 504 pp. (In Russian)

[6] Kostrikin A.I., Introduction to Algebra, v. III, Fizmatlit, M., 2001, 272 pp. (In Russian)

[7] Bourbaki N., Algebra. Polynomials and Fields. Ordered Groups, Nauka, M., 1965, 300 pp. (In Russian)

[8] Alaca S., Williams K.S., Introductory Algebraic Number Theory, Cambridge Univ. Press, New York, NY, 2004, 428 pp.

[9] Marcus D.A., Number Fields, Universitext, 2nd ed., Springer, Cham, 2018, xviii+203 pp. | DOI