@article{UZKU_2024_166_1_a8,
author = {P. L. Shabalin and R. R. Faizov},
title = {The {Hilbert} problem in a half-plane for generalized analytic functions with a singular point on the real axis},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {111--122},
year = {2024},
volume = {166},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a8/}
}
TY - JOUR AU - P. L. Shabalin AU - R. R. Faizov TI - The Hilbert problem in a half-plane for generalized analytic functions with a singular point on the real axis JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2024 SP - 111 EP - 122 VL - 166 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a8/ LA - ru ID - UZKU_2024_166_1_a8 ER -
%0 Journal Article %A P. L. Shabalin %A R. R. Faizov %T The Hilbert problem in a half-plane for generalized analytic functions with a singular point on the real axis %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2024 %P 111-122 %V 166 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a8/ %G ru %F UZKU_2024_166_1_a8
P. L. Shabalin; R. R. Faizov. The Hilbert problem in a half-plane for generalized analytic functions with a singular point on the real axis. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 111-122. http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a8/
[1] Vekua I.N., Generalized Analytic Functions, Nauka, M., 1988, 512 pp. (In Russian)
[2] Timergaliev S.N., “On existence of solutions of nonlinear equilibrium problems on shallow inhomogeneous anisotropic shells of the Timoshenko type”, Russ. Math., 63:8 (2019), 38–53 | DOI
[3] Timergaliev S.N., “On the solvability of nonlinear boundary value problems for the system of differential equations of equilibrium of shallow anisotropic Timoshenko-type shells with free edges”, Differ. Equations, 57:4 (2021), 488–506 | DOI
[4] Mikhailov L.G., New Classes of Special Integral Equations and Their Application to Differential Equations with Singular Coefficients, Akad. Nauk Tadzh. SSR, Dushanbe, 1963, 183 pp. (In Russian)
[5] Rajabov N.R., Integral Representations and Boundary Value Problems for Some Differential Equations with a Singular Line or Singular Surfaces, v. I, TGU, Dushanbe, 1980, 126 pp. (In Russian)
[6] Rajabov N.R., Integral Representations and Boundary Value Problems for Some Differential Equations with a Singular Line or Singular Surfaces, v. II, TGU, Dushanbe, 1981, 170 pp. (In Russian)
[7] Rajabov N.R. Integral'nye predstavlenie i granichnye zadachi dlya nekotorykh differentsial'nykh uravnenii s singulyarnoi liniei ili s singulyarnymi poverkhnostyami [Integral Representations and Boundary Value Problems for Some Differential Equations with a Singular Line or Singular Surfaces, v. III, TGU, Dushanbe, 1982, 170 pp. (In Russian)
[8] Rajabov N.R., “Integral representations and boundary value problems for the generalized Cauchy–Riemann system with a singular line”, Dokl. Akad. Nauk SSSR, 267:2 (1982), 300–305 (In Russian)
[9] Usmanov Z.D., Generalized Cauchy–Riemann Systems with a Singular Point, Akad. Nauk Tadzh. SSR, Dushanbe, 1993, 244 pp. (In Russian)
[10] Begehr H., Dai D.-Q., “On continuous solutions of a generalized Cauchy–Riemann system with more than one singularity”, J. Differ. Equations, 196:1 (2004), 67–90 | DOI
[11] Meziani A., “Representation of solutions of a singular Cauchy–Riemann equation in the plane”, Complex Var. Elliptic Equations, 53:12 (2008), 1111–1130 | DOI
[12] Rasulov A.B., Soldatov A.P., “Boundary value problem for a generalized Cauchy–Riemann equation with singular coefficients”, Differ. Equations, 52:5 (2016), 616–629 | DOI | DOI
[13] Fedorov Yu.S., Rasulov A.B., “Hilbert type problem for a Cauchy–Riemann equation with singularities on a circle and at a point in the lower-order coefficients”, Differ. Equations, 57:1 (2021), 127–131 | DOI | DOI
[14] Rasulov A.B., Dorofeeva I.N., “Integral representations for the generalized Cauchy–Riemann equation with a supersingular point on a half-plane”, Vestn. MEI, 2020, no. 1, 105–108 (In Russian) | DOI
[15] Dorofeeva I.N., Rasulov A.B., “Dirichlet problem for a generalized Cauchy–Riemann equation with a supersingular point on a half-plane”, Comput. Math. Math. Phys., 60:10 (2020), 1679–1685 | DOI | DOI
[16] Rasulov A.B., “The Riemann problem on a semicircle for a generalized Cauchy–Riemann system with a singular line”, Differ. Equations, 40:9 (2004), 1364–1366 | DOI
[17] Rasulov A.B., “Integral representations and the linear conjugation problem for a generalized Cauchy–Riemann system with a singular manifold”, Differ. Equations, 36:2 (2000), 306–312 | DOI
[18] Shabalin P.L., “Hilbert boundary value problem for a class of generalized analytic functions with a singular line”, Mat. Fiz. Komp'yut. Model., 25:4 (2022), 15–28 (In Russian) | DOI
[19] Shabalin P.L., Faizov R.R., “The Riemann problem with a condition on the real axis for generalized analytic functions with a singular curve”, Sib. Math. J., 64:2 (2023), 431–442 | DOI
[20] Shabalin P.L., Faizov R.R., “The Riemann problem in a half-plane for generalized analytic functions with a singular line”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 3, 78–89 (In Russian) | DOI
[21] Shabalin P.L., Faizov R.R., “The Riemann problem on a ray for generalized analytic functions with a singular line”, Izv. Sarat. Univ. Nov. Ser. Ser.: Mat. Mekh. Inf., 23:1 (2023), 58–69 (In Russian) | DOI
[22] Gakhov F.D., Boundary Value Problems, Nauka, M., 1977, 640 pp. (In Russian)
[23] Alekna P.Ju., “Hilbert boundary value problem with infinite logarithmic order index for a half-plane”, Liet. Mat. Rinkinys, 17:1 (1977), 5–11 (In Russian)
[24] Alekhno A.G., “Hilbert boundary value problem with infinite index of logarithmic order”, Dokl. Akad. Nauk BSSR, 53:2 (2009), 5–10 (In Russian)
[25] Salimov R.B., Shabalin P.L., “On solvability of homogeneous Riemann–Hilbert problem with discontinuities of coefficients and two-sided curling at infinity of a logarithmic order”, Russ. Math., 60:1 (2016), 30–41 | DOI
[26] Shabalin P.L., Fatykhov A.K., “Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence”, Russ. Math., 65:1 (2021), 57–71 | DOI | DOI