The Hilbert problem in a half-plane for generalized analytic functions with a singular point on the real axis
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 111-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article analyzes the inhomogeneous Hilbert boundary value problem for an upper half-plane with the finite index and boundary condition on the real axis for one generalized Cauchy–Riemann equation with a singular point on the real axis. A structural formula was obtained for the general solution of this equation under restrictions leading to an infinite index of the logarithmic order of the accompanying Hilbert boundary value problem for analytic functions. This formula and the solvability results of the Hilbert problem in the theory of analytic functions were applied to solve the set boundary value problem.
Keywords: Hilbert boundary value problem, generalized analytic functions, singular point, infinite index, entire functions of refined zero order.
@article{UZKU_2024_166_1_a8,
     author = {P. L. Shabalin and R. R. Faizov},
     title = {The {Hilbert} problem in a half-plane for generalized analytic functions with a singular point on the real axis},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {111--122},
     year = {2024},
     volume = {166},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a8/}
}
TY  - JOUR
AU  - P. L. Shabalin
AU  - R. R. Faizov
TI  - The Hilbert problem in a half-plane for generalized analytic functions with a singular point on the real axis
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 111
EP  - 122
VL  - 166
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a8/
LA  - ru
ID  - UZKU_2024_166_1_a8
ER  - 
%0 Journal Article
%A P. L. Shabalin
%A R. R. Faizov
%T The Hilbert problem in a half-plane for generalized analytic functions with a singular point on the real axis
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 111-122
%V 166
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a8/
%G ru
%F UZKU_2024_166_1_a8
P. L. Shabalin; R. R. Faizov. The Hilbert problem in a half-plane for generalized analytic functions with a singular point on the real axis. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 111-122. http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a8/

[1] Vekua I.N., Generalized Analytic Functions, Nauka, M., 1988, 512 pp. (In Russian)

[2] Timergaliev S.N., “On existence of solutions of nonlinear equilibrium problems on shallow inhomogeneous anisotropic shells of the Timoshenko type”, Russ. Math., 63:8 (2019), 38–53 | DOI

[3] Timergaliev S.N., “On the solvability of nonlinear boundary value problems for the system of differential equations of equilibrium of shallow anisotropic Timoshenko-type shells with free edges”, Differ. Equations, 57:4 (2021), 488–506 | DOI

[4] Mikhailov L.G., New Classes of Special Integral Equations and Their Application to Differential Equations with Singular Coefficients, Akad. Nauk Tadzh. SSR, Dushanbe, 1963, 183 pp. (In Russian)

[5] Rajabov N.R., Integral Representations and Boundary Value Problems for Some Differential Equations with a Singular Line or Singular Surfaces, v. I, TGU, Dushanbe, 1980, 126 pp. (In Russian)

[6] Rajabov N.R., Integral Representations and Boundary Value Problems for Some Differential Equations with a Singular Line or Singular Surfaces, v. II, TGU, Dushanbe, 1981, 170 pp. (In Russian)

[7] Rajabov N.R. Integral'nye predstavlenie i granichnye zadachi dlya nekotorykh differentsial'nykh uravnenii s singulyarnoi liniei ili s singulyarnymi poverkhnostyami [Integral Representations and Boundary Value Problems for Some Differential Equations with a Singular Line or Singular Surfaces, v. III, TGU, Dushanbe, 1982, 170 pp. (In Russian)

[8] Rajabov N.R., “Integral representations and boundary value problems for the generalized Cauchy–Riemann system with a singular line”, Dokl. Akad. Nauk SSSR, 267:2 (1982), 300–305 (In Russian)

[9] Usmanov Z.D., Generalized Cauchy–Riemann Systems with a Singular Point, Akad. Nauk Tadzh. SSR, Dushanbe, 1993, 244 pp. (In Russian)

[10] Begehr H., Dai D.-Q., “On continuous solutions of a generalized Cauchy–Riemann system with more than one singularity”, J. Differ. Equations, 196:1 (2004), 67–90 | DOI

[11] Meziani A., “Representation of solutions of a singular Cauchy–Riemann equation in the plane”, Complex Var. Elliptic Equations, 53:12 (2008), 1111–1130 | DOI

[12] Rasulov A.B., Soldatov A.P., “Boundary value problem for a generalized Cauchy–Riemann equation with singular coefficients”, Differ. Equations, 52:5 (2016), 616–629 | DOI | DOI

[13] Fedorov Yu.S., Rasulov A.B., “Hilbert type problem for a Cauchy–Riemann equation with singularities on a circle and at a point in the lower-order coefficients”, Differ. Equations, 57:1 (2021), 127–131 | DOI | DOI

[14] Rasulov A.B., Dorofeeva I.N., “Integral representations for the generalized Cauchy–Riemann equation with a supersingular point on a half-plane”, Vestn. MEI, 2020, no. 1, 105–108 (In Russian) | DOI

[15] Dorofeeva I.N., Rasulov A.B., “Dirichlet problem for a generalized Cauchy–Riemann equation with a supersingular point on a half-plane”, Comput. Math. Math. Phys., 60:10 (2020), 1679–1685 | DOI | DOI

[16] Rasulov A.B., “The Riemann problem on a semicircle for a generalized Cauchy–Riemann system with a singular line”, Differ. Equations, 40:9 (2004), 1364–1366 | DOI

[17] Rasulov A.B., “Integral representations and the linear conjugation problem for a generalized Cauchy–Riemann system with a singular manifold”, Differ. Equations, 36:2 (2000), 306–312 | DOI

[18] Shabalin P.L., “Hilbert boundary value problem for a class of generalized analytic functions with a singular line”, Mat. Fiz. Komp'yut. Model., 25:4 (2022), 15–28 (In Russian) | DOI

[19] Shabalin P.L., Faizov R.R., “The Riemann problem with a condition on the real axis for generalized analytic functions with a singular curve”, Sib. Math. J., 64:2 (2023), 431–442 | DOI

[20] Shabalin P.L., Faizov R.R., “The Riemann problem in a half-plane for generalized analytic functions with a singular line”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 3, 78–89 (In Russian) | DOI

[21] Shabalin P.L., Faizov R.R., “The Riemann problem on a ray for generalized analytic functions with a singular line”, Izv. Sarat. Univ. Nov. Ser. Ser.: Mat. Mekh. Inf., 23:1 (2023), 58–69 (In Russian) | DOI

[22] Gakhov F.D., Boundary Value Problems, Nauka, M., 1977, 640 pp. (In Russian)

[23] Alekna P.Ju., “Hilbert boundary value problem with infinite logarithmic order index for a half-plane”, Liet. Mat. Rinkinys, 17:1 (1977), 5–11 (In Russian)

[24] Alekhno A.G., “Hilbert boundary value problem with infinite index of logarithmic order”, Dokl. Akad. Nauk BSSR, 53:2 (2009), 5–10 (In Russian)

[25] Salimov R.B., Shabalin P.L., “On solvability of homogeneous Riemann–Hilbert problem with discontinuities of coefficients and two-sided curling at infinity of a logarithmic order”, Russ. Math., 60:1 (2016), 30–41 | DOI

[26] Shabalin P.L., Fatykhov A.K., “Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence”, Russ. Math., 65:1 (2021), 57–71 | DOI | DOI