On the motion of a viscous liquid with a free boundary
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 99-110
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of the non-stationary flow of a viscous liquid with an external free boundary around a moving solid cylindrical body was formulated and solved. The liquid is subject to periodic impacts with or without the predominant direction in space. To formulate the problem, the Navier—Stokes equation, the continuity equation, and the equation of conditions at both the solid and free boundaries of the liquid were used. New hydro-mechanical effects were discovered.
Mots-clés : viscous liquid
Keywords: solid body, free boundary, periodic impacts, predominant direction in space, rotatory motion.
@article{UZKU_2024_166_1_a7,
     author = {V. L. Sennitskii},
     title = {On the motion of a viscous liquid with a free boundary},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {99--110},
     year = {2024},
     volume = {166},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a7/}
}
TY  - JOUR
AU  - V. L. Sennitskii
TI  - On the motion of a viscous liquid with a free boundary
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 99
EP  - 110
VL  - 166
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a7/
LA  - ru
ID  - UZKU_2024_166_1_a7
ER  - 
%0 Journal Article
%A V. L. Sennitskii
%T On the motion of a viscous liquid with a free boundary
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 99-110
%V 166
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a7/
%G ru
%F UZKU_2024_166_1_a7
V. L. Sennitskii. On the motion of a viscous liquid with a free boundary. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 99-110. http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a7/

[1] Chelomey V.N., “Paradoxes in mechanics caused by vibrations”, Dokl. Akad. Nauk SSSR, 270:1 (1983), 62–67 (In Russian)

[2] Chelomey V.N., Selected Works, Mashinostroenie, M., 1989, 336 pp. (In Russian)

[3] Sennitskii V.L., “Paradoxal motion of a liquid. Mezhdunar”, Zh. Prikl. Fundam. Issled., 2017, no. 8-1, 28–33 (In Russian) | DOI

[4] Sennitskii V.L., “Predominantly unidirectional flow of a viscous fluid”, J. Appl. Ind. Math., 15:2 (2021), 326–330 | DOI | DOI

[5] Sennitskii V.L., “On peculiarities of a liquid flow in a gravity field”, Sib. Elektron. Mat. Izv., 19:1 (2022), 241–247 (In Russian) | DOI

[6] Sennitskii V.L., “Motion of a circular cylinder in a vibrating liquid”, J. Appl. Mech. Tech. Phys., 26:5 (1985), 620–623 | DOI

[7] Lugovtsov B.A., Sennitskii V.L., “Motion of a body in a vibrating liquid”, Dokl. Akad. Nauk SSSR, 289:2 (1986), 314–317 (In Russian)

[8] Lyubimov D.V., Lyubimova T.P., Cherpanov A.A., “On the motion of a rigid body in a vibrating liquid”, Convective Flows, Izd. Permsk. Pedagog. Inst., Perm, 1987, 61–71 (In Russian)

[9] Sennitskii V.L., “Predominantly unidirectional motion of a gas bubble in a vibrating liquid”, Dokl. Akad. Nauk SSSR, 319:1 (1991), 117–119 (In Russian)

[10] Lyubimov D.V., “New approach in the vibrational convection theory”, Proc. 14 IMACs Congr. on Computational and Applied Mathematics, Ga. Inst. Technol., Atlanta, GA, 1994, 59–68

[11] Lyubimov D.V., “Thermovibrational flows in nonuniform systems”, Microgravity Q, 4:1 (1994), 221–225

[12] Kozlov V.G., “Solid-body dynamics in cavity with liquid under high-frequency rotational vibration”, Europhys. Lett., 36:9 (1996), 651–656 | DOI

[13] Lyubimov D.V., Lyubimova T.P., Meradji S., Roux B., “Vibrational control of crystal growth from liquid phase”, J. Cryst. Growth, 180:3–4 (1997), 648–659 | DOI

[14] Ivanova A.A., Kozlov V.G., Evesque P., “Dynamics of a cylindrical body in a liquid-filled sector of a cylindrical layer under rotational vibration”, Fluid Dyn., 33:4 (1998), 488–496 | DOI

[15] Lyubimov D.V., Perminov A.V., Cherepanov A.A., “Generation of mean flows near fluid interface in a vibration field”, Vibration Effects in Hydrodynamics, A Collection of Articles, Permsk. Univ., Perm, 1998, 204–221 (In Russian)

[16] Lyubimov D.V., Lyubimova T.P., Cherepanov A.A., Dynamics of Interfaces in Vibration Fields, Fizmatlit, M., 2003, 216 pp. (In Russian)

[17] Ivanova A.A., Kozlov V.G., Kuzaev A.F., “Vibrational lift force acting on a body in a fluid near a solid surface”, Dokl. Phys., 50:6 (2005), 311–314 | DOI

[18] Lyubimov D., Lyubimova T., Vorobev A., Mojtabi A., Zappoli B., “Thermal vibrational convection in near-critical fluids. Part I. Non-uniform heating”, J. Fluid Mech., 564 (2006), 159–183 | DOI

[19] Hassan S., Lyubimova T.P., Lyubimov D.V., Kawaji M., “Motion of a sphere suspended in a vibrating liquid-filled container”, J. Appl. Mech., 73:1 (2006), 72–78 | DOI

[20] Lyubimov D.V., Lyubimova T.P., Shklyaev S.V., “Behavior of a drop on an oscillating solid plate”, Phys. Fluids, 18 (2006), 012101 | DOI

[21] Shevtsova V., Melnikov D., Legros J.C., Yan Y., Saghir Z., Lyubimova T., Sedelnikov G., Roux B., “Influence of vibrations on thermodiffusion in binary mixture: A benchmark of numerical solutions”, Phys. Fluids, 19 (2007), 017111 | DOI

[22] Ivanova A.A., Kozlov V.G., Kuzaev A.F., “Vibrational hydrodynamic interaction between a sphere and the boundaries of a cavity”, Fluid Dyn., 43:2 (2008), 194–202 | DOI

[23] Kozlov V., Ivanova A., Schipitsyn V., Stambouli M., “Lift force acting on the cylinder in viscous liquid under vibration”, Acta Astronaut., 79 (2012), 44–51 | DOI

[24] Ivanova A.A., Kozlov V.G., Shchipitsyn V.D., “A light cylinder under horizontal vibration in a cavity filled with a fluid”, Fluid Dyn., 45:6 (2010), 889–897 | DOI

[25] Lyubimov D.V., Baydin A.Y., Lyubimova T.P., “Particle dynamics in a fluid under high frequency vibrations of linear polarization”, Microgravity Sci. Techol., 25:2 (2013), 121–126 | DOI

[26] Ivanova A.A., Kozlov V.G., Shchipitsyn V.D., “Lift force acting on a cylindrical body in a fluid near the boundary of a cavity performing translational vibrations”, J. Appl. Mech. Tech. Phys., 55:5 (2014), 773–780 | DOI

[27] Alabuzhev A.A., “Behavior of a cylindrical bubble under vibrations”, Vychisl. Mekh. Sploshnykh Sred, 7:2 (2014), 151–161 (In Russian) | DOI

[28] Sennitskii V.L., “On a prescribed orientation of a solid inclusion in a viscous fluid”, Sib. Zh. Ind. Mat., 18:1 (2015), 123–128 (In Russian) | DOI

[29] Kozlov V., Vlasova O., “The repulsion of flat body from the wall of vibrating container filled with liquid”, Microgravity Sci. Technol, 27:4 (2015), 297–303 | DOI

[30] Kozlov N.V., Vlasova O.A., “Behaviour of a heavy cylinder in a horizontal cylindrical liquid-filled cavity at modulated rotation”, Fluid Dyn. Res., 48:5 (2016), 055503 | DOI

[31] Sennitskii V.L., “Predominantly unidirectional rotation of a solid body and a viscous liquid”, J. Appl. Ind. Math., 11:2 (2017), 284–288 | DOI | DOI

[32] Vlasova O.A., Kozlov V.G., Kozlov N.V., “Lift force acting on a heavy solid in a rotating liquid-filled cavity with a time-varying rotation rate”, J. Appl. Mech. Tech. Phys., 59:2, 219–228 | DOI

[33] Konovalov V.V., Lyubimova T.P., “Numerical study of the effect of vibrations on the interaction in an ensemble of gas bubbles and solid particles in a liquid”, Vychisl. Mekh. Sploshnykh Sred, 12:1 (2019), 48–56 (In Russian) | DOI

[34] Shchipitsyn V.D., “Vibrations of a nonaxisymmetric cylinder in a cavity filled with liquid and performing rotational oscillations”, Tech. Phys. Lett., 46:8 (2020), 771–774 | DOI | DOI

[35] Konovalov V.V., Lyubimova T.P., “Influence of acoustic vibrations on the interaction of a gas bubble and a solid particle in a liquid”, Scientific Lectures on Hydrodynamics in Perm, Proc. VIII All-Russ. Conf. in Memory of Professors G.Z. Gershuni, E.M. Zhukhovitskii, and D.V. Lyubimov, ed. Lyubimov T.P., PGNIU, Perm, 2022, 254–261 (In Russian)

[36] Kapitza P.L., “Pendulum with a vibrating suspension”, Usp. Fiz. Nauk, 44:1 (1951), 7–20 (In Russian) | DOI

[37] Kryloff N.M., Bogoliuboff N.N., Introduction to Non-Linear Mechanics, NITs “Regulyarn. Khaot. Din.”, M.–Izhevsk, 2004, 352 pp. (In Russian)

[38] Bogoliubov N.N., Mitropolsky Y.A., Asymptotic Methods in the Theory of Non-Linear Oscillations, GIFML, M., 1958, 408 pp. (In Russian)