Tricomi problem and integral equations
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 74-91
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Formulas for inverting integral equations that arise when studying the Tricomi problem for the Lavrentyev–Bitsadze equation were derived. Solvability conditions of an auxiliary overdetermined problem in the elliptic part of the mixed domain were found using the Green function method. A connection was established between the Green functions of the Dirichlet problem and problem N for the Laplace equation in the form of integral equations mutually inverting each other. Various integral equations were considered, including explicitly solvable ones, to which the Tricomi problem can be reduced. An explicit solution of the characteristic singular equation with a Cauchy kernel was obtained without involving the theory of boundary value problems for analytic functions.
Keywords: Tricomi problem, overdetermined problem, integral equation, Green function, conformal mapping.
@article{UZKU_2024_166_1_a5,
     author = {N. B. Pleshchinskii},
     title = {Tricomi problem and integral equations},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {74--91},
     year = {2024},
     volume = {166},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a5/}
}
TY  - JOUR
AU  - N. B. Pleshchinskii
TI  - Tricomi problem and integral equations
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 74
EP  - 91
VL  - 166
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a5/
LA  - ru
ID  - UZKU_2024_166_1_a5
ER  - 
%0 Journal Article
%A N. B. Pleshchinskii
%T Tricomi problem and integral equations
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 74-91
%V 166
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a5/
%G ru
%F UZKU_2024_166_1_a5
N. B. Pleshchinskii. Tricomi problem and integral equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 74-91. http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a5/

[1] Tricomi F., “Sulle equazioni lineari alle derivate parziali di $2^\circ$ ordine di tipo misto”, Memor. della R. Accad. Naz. dei Lincci. Ser. 5, 14:7 (1923), 133–247 (In Italian)

[2] Tricomi F.D., On Second-Order Linear Partial Differential Equations of Mixed Type, Gostekhizdat, M.–L., 1947, 192 pp. (In Russian)

[3] Frankl F., Selected Works on Gas Dynamics, Nauka, M., 1973, 772 pp. (In Russian)

[4] Lavrentyev M.A., Bitsadze A.V., “On the problem of equations of mixed type”, Dokl. Akad. Nauk SSSR, 70:3 (1950), 373–376 (In Russian)

[5] Bitsadze A.V., “On the problem of equations of mixed type”, Tr. MIAN SSSR, 41, 1953, 3–59 (In Russian)

[6] Bitsadze A.V., Equations of Mixed Type, Izd. Akad. Nauk SSSR, M., 1959, 164 pp. (In Russian)

[7] Smirnov M.M., Equations of Mixed Type, Nauka, M., 1970, 295 pp. (In Russian)

[8] Marichev O.I., Kilbas A.A., Repin O.A., Boundary Value Problems for Partial Differential Equations with Discontinuous Coefficients, Izd. Samar. Gos. Ekon. Univ., Samara, 2008, 276 pp. (In Russian)

[9] Sabitov K.B., On the Theory of Equations of Mixed Type, Fizmatlit, M., 2014, 304 pp. (In Russian)

[10] Pleshchinskaya I.E., Pleshchinskii N.B., “Over-determined boundary value problems for elliptic partial differential equations and their applications to waves diffraction theory”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 147:3 (2005), 4–32 (In Russian)

[11] Pleshchinskaya I.E., Pleshchinskii N.B., “Over-determined boundary value problems for PDE and their application in the wave propagation theory”, Appl. Anal., 93:11 (2014), 2350–2359 | DOI

[12] Krikunov Yu.M., “On the Tricomi problem for the Lavrentyev–Bitsadze equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 2, 76–81 (In Russian)

[13] Krikunov Yu.M., “On the Tricomi problem for a square”, Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 10, 81–85 (In Russian)

[14] Krikunov Yu.M., Boundary Value Problems for the Model Equations of Mixed Type, Izd. Kazan. Univ., Kazan, 1986, 148 pp. (In Russian)

[15] Tikhonov A.N., Samarskii A.A., Equations of Mathematical Physics, Nauka, M., 1977, 736 pp. (In Russian)

[16] Aksent'ev L.A., Symmetry Method. Program and Assignments for a Special Course, Izd. Kazan. Univ., Kazan, 1991, 48 pp. (In Russian)

[17] Ford L.R., Automorphic Functions, ONTI, M.–L., 1936, 340 pp. (In Russian)

[18] Chibrikova L.I., “On the method of D.A. Grave for solving the Dirichlet problem”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 122, no. 3, 1962, 73–80 (In Russian)

[19] Begehr H., Vaitekhovich T., “Green functions, reflections, and plane parqueting”, Eurasian Math. J., 1:1 (2010), 17–31

[20] Begehr H., Vaitekhovich T., “The parqueting-reflection principle for constructing Green functions”, Analytic Methods of Analysis and Differential Equations, AMADE 2012, Cambridge Sci. Publ., Cottenham, 2013, 11–20

[21] Gakhov F.D., Boundary Value Problems, Nauka, M., 1977, 640 pp. (In Russian)

[22] Aksent'ev L.A., “Construction of the Schwarz operator by the symmetry method”, Tr. Semin. Obratnym Kraev. Zadacham, 2, Izd. Kazan. Univ., 1964, 3–11 (In Russian)

[23] Aksent'ev L.A., “Construction of the Schwarz operator by the symmetry method”, Tr. Semin. Obratnym Kraev. Zadacham, 3, Izd. Kazan. Univ., 1966, 11–24 (In Russian)

[24] Aksent'ev L.A., “Construction of the Schwarz operator by the symmetry method”, Tr. Semin. Obratnym Kraev. Zadacham, 4, Izd. Kazan. Univ., 1967, 3–10 (In Russian)

[25] Aksent'ev L.A., Application of the Symmetry Method to Conformal Mappings and Boundary Value Problems, Program and Assignments for a Special Course, Izd. Kazan. Univ., Kazan, 1993, 48 pp. (In Russian)

[26] Chibrikova L.I., “Boundary value problems of the theory of analytic functions on Riemann surfaces”, Achievements of Science and Technology. Series: Mathematical Analysis, 18, VINITI, M., 1980, 3–66 (In Russian)

[27] Mikhlin S.G., Lectures on Linear Integral Equations, Fizmatgiz, M., 1959, 232 pp. (In Russian)

[28] Maher A., Pleshchinskii N.B., “On connection among values of solutions of the Tricomi problem on the sides of characteristic triangles”, Acta Sci. Math. (Szeged), 74 (2008), 121–133

[29] Gakhov F.D., Chibrikova L.I., “On some types of singular integral equations solvable in closed form”, Mat. Sb., 35:3 (1954), 395–436 (In Russian)

[30] Pleshchinskii N.B., Applications of the Theory of Integral Equations with Logarithmic and Power Kernels, A Study Guide, Izd. Kazan. Univ., Kazan, 1987, 154 pp. (In Russian)

[31] Chibrikova L.I., Basic Boundary Value Problems for Analytic Functions, Kazan. Univ., Kazan, 1977, 302 pp. (In Russian)

[32] Muskhelishvili N.I., Singular Integral Equations, Nauka, M., 1968, 511 pp. (In Russian)