On the stability of a particular class of one-dimensional states of dynamic equilibrium of the Vlasov–Poisson electron gas
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 36-51
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The one-dimensional problem of the linear stability of dynamic states of local thermodynamic equilibria with respect to small perturbations was studied for the case when the Vlasov–Poisson electron gas contains electrons with a stationary distribution function that is constant in physical space and variable in a continuum of velocities. The absolute instability of all considered one-dimensional dynamic states of any local thermodynamic equilibrium was proved using the direct Lyapunov method. The scope of applicability of the Newcomb–Gardner–Rosenbluth sufficient condition for linear stability was outlined. An a priori exponential estimation was obtained for the rise of small one-dimensional perturbations from below. Analytic counterexamples to the spectral Newсomb–Gardner theorem and the Penrose criterion were constructed. Earnshaw’s theorem was extended from classical mechanics to statistical one.
Mots-clés : Vlasov–Poisson electron gas
Keywords: dynamic equilibrium states, linear stability, direct Lyapunov method.
@article{UZKU_2024_166_1_a2,
     author = {Yu. G. Gubarev and M. S. Kotelnikova},
     title = {On the stability of a particular class of one-dimensional states of dynamic equilibrium of the {Vlasov{\textendash}Poisson} electron gas},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {36--51},
     year = {2024},
     volume = {166},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a2/}
}
TY  - JOUR
AU  - Yu. G. Gubarev
AU  - M. S. Kotelnikova
TI  - On the stability of a particular class of one-dimensional states of dynamic equilibrium of the Vlasov–Poisson electron gas
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 36
EP  - 51
VL  - 166
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a2/
LA  - ru
ID  - UZKU_2024_166_1_a2
ER  - 
%0 Journal Article
%A Yu. G. Gubarev
%A M. S. Kotelnikova
%T On the stability of a particular class of one-dimensional states of dynamic equilibrium of the Vlasov–Poisson electron gas
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 36-51
%V 166
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a2/
%G ru
%F UZKU_2024_166_1_a2
Yu. G. Gubarev; M. S. Kotelnikova. On the stability of a particular class of one-dimensional states of dynamic equilibrium of the Vlasov–Poisson electron gas. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 36-51. http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a2/

[1] Bernstein I.B., “Waves in a plasma in a magnetic field”, Phys. Rev, 109:1 (1958), 10–21 | DOI

[2] Gardner C.S., “Bound on the energy available from a plasma”, Phys. Fluids, 6:6 (1963), 839–840 | DOI

[3] Rosenbluth M.N., “Topics in microinstabilities”, Advanced Plasma Theory, Proceedings of the International School of Physics “Enrico Fermi”, 25, ed. Rosenbluth M.N., Acad. Press, New York, NY, 1964, 137–158

[4] Holm D.D., Marsden J.E., Ratiu T.S., Weinstein A., “Nonlinear stability of fluid and plasma equilibria”, Phys. Rep., 123:1–2 (1985), 1–116

[5] Pankavich S., Allen R., “Instability conditions for some periodic BGK waves in the Vlasov–Poisson system”, Eur. Phys. J. D, 68:12 (2014), 363 | DOI

[6] Han-Kwan D., Hauray M., “Stability issues in the quasineutral limit of the one-dimensional Vlasov-Poisson equation”, Commun. Math. Phys., 334:2 (2015), 1101–1152 | DOI

[7] Esenturk E., Hwang H.-J., “Linear stability of the Vlasov-Poisson system with boundary conditions”, Nonlinear Anal, 139 (2016), 75–105 | DOI

[8] Landau L.D., “On the vibrations of the electronic plasma”, Usp. Fiz. Nauk, 93:3 (1967), 527–540 (In Russian)

[9] Mouhot C., Villani C., “On Landau damping”, Acta Math., 207:1 (2011), 29–201 | DOI

[10] Bedrossian J., Masmoudi N., Mouhot C., “Linearized wave-damping structure of Vlasov–Poisson in $\mathbb R^3$”, SIAM J. Math. Anal., 54:4 (2022), 4379–4406 | DOI

[11] Bibilova S.A., Gubarev Y.G., “Two-flow instability of one class of spherically symmetric dynamic equilibrium states of Vlasov–Poisson plasma”, Acta Appl. Math., 187:1 (2023), 2 | DOI

[12] Gubarev Yu.G., “Two-flow instability of particular class of one-dimensional dynamic equilibrium states of Vlasov–Poisson plasma”, Plasma Res. Express, 1:4 (2019), 045008 | DOI

[13] Zakharov V.E., Kuznetsov E.A., “Hamiltonian formalism for nonlinear waves”, Phys.-Usp., 40:11 (1997), 1087–1116 | DOI

[14] Zakharov V.E., Kuznetsov E.A., Hamiltonian Formalism for Systems of Hydrodynamic Type, Preprint 186, Inst. Avtom. Elektrom., Novosibirsk, 1982, 50 pp. (In Russian)

[15] Godunov S.K., Equations of Mathematical Physics, Nauka, M., 1979, 392 pp. (In Russian)

[16] Krall N.A., Trivelpiece A.W., Principles of Plasma Physics, Mir, M., 1975, 528 pp. (In Russian)

[17] Penrose O., “Electrostatic instabilities of a uniform non-Maxwellian plasma”, Phys. Fluids, 3:2 (1960), 258–264 | DOI

[18] Zakharov V.E., “Benney equations and quasiclassical approximation in the method of the inverse problem”, Funct. Anal. Appl., 14:2 (1980), 89–98 | DOI

[19] Gubarev Yu.G., “To analogy between the Benny and Vlasov–Poisson equations”, Dynamics of a Continuous Medium, A Collection of Articles by the Institute of Hydrodynamics, Acoustics of heterogeneous media, 110, Russian Academy of Sciences, Siberain Branch, 1995, 78–90 (In Russian)

[20] Yakubovich V.A., Starzhinskii V.M., Linear Differential Equations with Periodic Coefficients and Their Applications, Nauka, M., 1972, 718 pp. (In Russian)

[21] Chandrasekhar S., Ellipsoidal Figures of Equilibrium, Mir, M., 1973, 288 pp. (In Russian)

[22] Chaplygin S.A., A New Method for Approximate Integration of Differential Equations, GITTL, M., 1950, 103 pp. (In Russian)

[23] Gubarev Yu.G., The Direct Lyapunov Method. The Stability of Quiescent States and Steady-State Flows of Fluids and Gases, Palmarium Acad. Publ., Saarbrücken, 2012, 192 pp. (In Russian)

[24] Sirazetdinov T.K., Optimization of Systems with Distributed Parameters, Nauka, Novosibirsk, 1987, 229 pp. (In Russian)