Voir la notice du chapitre de livre
Keywords: dynamic equilibrium states, linear stability, direct Lyapunov method.
@article{UZKU_2024_166_1_a2,
author = {Yu. G. Gubarev and M. S. Kotelnikova},
title = {On the stability of a particular class of one-dimensional states of dynamic equilibrium of the {Vlasov{\textendash}Poisson} electron gas},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {36--51},
year = {2024},
volume = {166},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a2/}
}
TY - JOUR AU - Yu. G. Gubarev AU - M. S. Kotelnikova TI - On the stability of a particular class of one-dimensional states of dynamic equilibrium of the Vlasov–Poisson electron gas JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2024 SP - 36 EP - 51 VL - 166 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a2/ LA - ru ID - UZKU_2024_166_1_a2 ER -
%0 Journal Article %A Yu. G. Gubarev %A M. S. Kotelnikova %T On the stability of a particular class of one-dimensional states of dynamic equilibrium of the Vlasov–Poisson electron gas %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2024 %P 36-51 %V 166 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a2/ %G ru %F UZKU_2024_166_1_a2
Yu. G. Gubarev; M. S. Kotelnikova. On the stability of a particular class of one-dimensional states of dynamic equilibrium of the Vlasov–Poisson electron gas. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 36-51. http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a2/
[1] Bernstein I.B., “Waves in a plasma in a magnetic field”, Phys. Rev, 109:1 (1958), 10–21 | DOI
[2] Gardner C.S., “Bound on the energy available from a plasma”, Phys. Fluids, 6:6 (1963), 839–840 | DOI
[3] Rosenbluth M.N., “Topics in microinstabilities”, Advanced Plasma Theory, Proceedings of the International School of Physics “Enrico Fermi”, 25, ed. Rosenbluth M.N., Acad. Press, New York, NY, 1964, 137–158
[4] Holm D.D., Marsden J.E., Ratiu T.S., Weinstein A., “Nonlinear stability of fluid and plasma equilibria”, Phys. Rep., 123:1–2 (1985), 1–116
[5] Pankavich S., Allen R., “Instability conditions for some periodic BGK waves in the Vlasov–Poisson system”, Eur. Phys. J. D, 68:12 (2014), 363 | DOI
[6] Han-Kwan D., Hauray M., “Stability issues in the quasineutral limit of the one-dimensional Vlasov-Poisson equation”, Commun. Math. Phys., 334:2 (2015), 1101–1152 | DOI
[7] Esenturk E., Hwang H.-J., “Linear stability of the Vlasov-Poisson system with boundary conditions”, Nonlinear Anal, 139 (2016), 75–105 | DOI
[8] Landau L.D., “On the vibrations of the electronic plasma”, Usp. Fiz. Nauk, 93:3 (1967), 527–540 (In Russian)
[9] Mouhot C., Villani C., “On Landau damping”, Acta Math., 207:1 (2011), 29–201 | DOI
[10] Bedrossian J., Masmoudi N., Mouhot C., “Linearized wave-damping structure of Vlasov–Poisson in $\mathbb R^3$”, SIAM J. Math. Anal., 54:4 (2022), 4379–4406 | DOI
[11] Bibilova S.A., Gubarev Y.G., “Two-flow instability of one class of spherically symmetric dynamic equilibrium states of Vlasov–Poisson plasma”, Acta Appl. Math., 187:1 (2023), 2 | DOI
[12] Gubarev Yu.G., “Two-flow instability of particular class of one-dimensional dynamic equilibrium states of Vlasov–Poisson plasma”, Plasma Res. Express, 1:4 (2019), 045008 | DOI
[13] Zakharov V.E., Kuznetsov E.A., “Hamiltonian formalism for nonlinear waves”, Phys.-Usp., 40:11 (1997), 1087–1116 | DOI
[14] Zakharov V.E., Kuznetsov E.A., Hamiltonian Formalism for Systems of Hydrodynamic Type, Preprint 186, Inst. Avtom. Elektrom., Novosibirsk, 1982, 50 pp. (In Russian)
[15] Godunov S.K., Equations of Mathematical Physics, Nauka, M., 1979, 392 pp. (In Russian)
[16] Krall N.A., Trivelpiece A.W., Principles of Plasma Physics, Mir, M., 1975, 528 pp. (In Russian)
[17] Penrose O., “Electrostatic instabilities of a uniform non-Maxwellian plasma”, Phys. Fluids, 3:2 (1960), 258–264 | DOI
[18] Zakharov V.E., “Benney equations and quasiclassical approximation in the method of the inverse problem”, Funct. Anal. Appl., 14:2 (1980), 89–98 | DOI
[19] Gubarev Yu.G., “To analogy between the Benny and Vlasov–Poisson equations”, Dynamics of a Continuous Medium, A Collection of Articles by the Institute of Hydrodynamics, Acoustics of heterogeneous media, 110, Russian Academy of Sciences, Siberain Branch, 1995, 78–90 (In Russian)
[20] Yakubovich V.A., Starzhinskii V.M., Linear Differential Equations with Periodic Coefficients and Their Applications, Nauka, M., 1972, 718 pp. (In Russian)
[21] Chandrasekhar S., Ellipsoidal Figures of Equilibrium, Mir, M., 1973, 288 pp. (In Russian)
[22] Chaplygin S.A., A New Method for Approximate Integration of Differential Equations, GITTL, M., 1950, 103 pp. (In Russian)
[23] Gubarev Yu.G., The Direct Lyapunov Method. The Stability of Quiescent States and Steady-State Flows of Fluids and Gases, Palmarium Acad. Publ., Saarbrücken, 2012, 192 pp. (In Russian)
[24] Sirazetdinov T.K., Optimization of Systems with Distributed Parameters, Nauka, Novosibirsk, 1987, 229 pp. (In Russian)