Some estimates for elliptic systems generalizing the Bitsadze system of equations
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 22-35
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article explores an elliptic system of $n$ equations where the main part is the Bitsadze operator (the square of the Cauchy–Riemann operator) and the lower term is the product of a given matrix function by the conjugate of the desired vector function. The system was analyzed in the Banach space of vector functions that are bounded and uniformly Hölder continuous in the entire complex plane. It was revealed that the problem of solving the system in the specified space may not be Noetherian. An example of a homogeneous system with an infinite number of linearly independent solutions was given. As is known, for many classes of elliptic systems, the Noetherianity of boundary value problems in a compact domain is equivalent to the presence of a priori estimates in the corresponding spaces. In this regard, it is important to study the issues related to the establishment of a priori estimates for the system under consideration in the above space. In the case of coefficients weakly oscillating at infinity, necessary and sufficient conditions for the validity of the a priori estimate were found. These conditions were written out in the language of the spectrum of limit matrices formed by the partial limits of the coefficient matrix at infinity. Specific examples were provided to illustrate how the limit matrices are constructed and what the above conditions look like.
Keywords: elliptic system, functions bounded and uniformly Hölder continuous, a priori estimate, Noetherian property.
@article{UZKU_2024_166_1_a1,
     author = {S. Baizaev and R. N. Barotov},
     title = {Some estimates for elliptic systems generalizing the {Bitsadze} system of equations},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {22--35},
     year = {2024},
     volume = {166},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a1/}
}
TY  - JOUR
AU  - S. Baizaev
AU  - R. N. Barotov
TI  - Some estimates for elliptic systems generalizing the Bitsadze system of equations
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 22
EP  - 35
VL  - 166
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a1/
LA  - ru
ID  - UZKU_2024_166_1_a1
ER  - 
%0 Journal Article
%A S. Baizaev
%A R. N. Barotov
%T Some estimates for elliptic systems generalizing the Bitsadze system of equations
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 22-35
%V 166
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a1/
%G ru
%F UZKU_2024_166_1_a1
S. Baizaev; R. N. Barotov. Some estimates for elliptic systems generalizing the Bitsadze system of equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 22-35. http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a1/

[1] Bitsadze A.V., Some Classes of Partial Differential Equations, Nauka, M., 1981, 448 pp. (In Russian)

[2] Baizaev S., Muhamadiev E., “On the index of first-order elliptic operators on the plane”, Differ. Equations, 28:5 (1992), 663–672

[3] Bers L., John F., Schechter M., Partial Differential Equations, Mir, M., 1966, 351 pp. (In Russian)

[4] Ladyzhenskaya O.A., Ural'tseva N.N., Linear and Quasilinear Equations of Elliptic Type, Nauka, M., 1973, 576 pp. (In Russian)

[5] Vekua I.N., Generalized Analytic Functions, Nauka, M., 1988, 509 pp. (In Russian)

[6] Baizaev S., “On the solutions of polynomial growth for a multidimensional generalized Cauchy–Riemann system”, Ufa Math. J., 7:3 (2015), 3–8 | DOI

[7] Bellman R., Introduction to Matrix Analysis, Nauka, M., 1976, 351 pp. (In Russian)

[8] Vladimirov V.S., Generalized Functions in Mathematical Physics, Nauka, M., 1976, 280 pp. (In Russian)

[9] Baizaev S., Rakhimova M.A., “Some functional equations in Schwartz space and their applications”, Ufa Math. J., 10:1 (2018), 3–13 | DOI