A priori and a posteriori estimates for solving one evolutionary inverse problem
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 5-21
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article considers an initial-boundary value problem for a system of parabolic equations, which arises when studying the flow of a binary mixture in a horizontal channel with walls heated non-uniformly. The problem was reduced to a sequence of initial-boundary value problems with Dirichlet or Neumann conditions. Among them, an inverse problem with a non-local overdetermination condition was distinguished. The solution was constructed using the Fourier method and validated as classical. The behavior of the non-stationary solution at large times was discussed. It was shown that certain functions within the solution tend to their stationary analogs exponentially at large times. For some functions, only boundedness was proved. The problem and its solution are relevant for modeling the thermal modes associated with the separation of liquid mixtures.
Keywords: equation of convective heat and mass transfer, non-classical boundary value problem, non-stationary solution, a priori estimate, boundedness.
@article{UZKU_2024_166_1_a0,
     author = {V. K. Andreev and I. V. Stepanova},
     title = {A priori and a posteriori estimates for solving one evolutionary inverse problem},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--21},
     year = {2024},
     volume = {166},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a0/}
}
TY  - JOUR
AU  - V. K. Andreev
AU  - I. V. Stepanova
TI  - A priori and a posteriori estimates for solving one evolutionary inverse problem
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2024
SP  - 5
EP  - 21
VL  - 166
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a0/
LA  - ru
ID  - UZKU_2024_166_1_a0
ER  - 
%0 Journal Article
%A V. K. Andreev
%A I. V. Stepanova
%T A priori and a posteriori estimates for solving one evolutionary inverse problem
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2024
%P 5-21
%V 166
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a0/
%G ru
%F UZKU_2024_166_1_a0
V. K. Andreev; I. V. Stepanova. A priori and a posteriori estimates for solving one evolutionary inverse problem. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a0/

[1] Andreev V.K., Gaponenko Yu.A., Goncharova O.N., Pukhnachev V.V., Mathematical Models of Convection, Fizmatlit, M., 2008, 368 pp. (In Russian)

[2] Andreev V.K., Stepanova I.V., “On the conditions for existence of unidirectional motions of binary mixtures in the Oberbeck–Boussinesq model”, J. Appl. Ind. Math., 13:2 (2019), 185–193 | DOI | DOI

[3] Kirdyashkin A.G., “Thermogravitational and thermocapillary flows in a horizontal liquid layer under the conditions of a horizontal temperature gradient”, Int. J. Heat Mass Transfer., 27:8 (1984), 1205–1218 | DOI

[4] Kozhanov A.I., “Parabolic equations with an unknown time-dependent coefficient”, Comput. Math. Math. Phys., 45:12 (2005), 2085–2101

[5] Iskenderov A.D., Akhundov A.Ya., “Inverse problem for a linear system of parabolic equations”, Dokl. Math., 79:1 (2009), 73–75 | DOI

[6] Kerimov N.B., Ismailov M.I., “An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions”, J. Math. Anal. Appl., 396:2 (2012), 546–554 | DOI

[7] Andreev V.K., Stepanova I.V., “Inverse problem for source function in parabolic equation at Neumann boundary conditions”, J. Sib. Fed. Univ. Math. Phys., 14:4 (2021), 445–451 | DOI

[8] Sidorov A.F., Selected Works: Mathematics. Mechanics, Fizmatlit, M., 2001, 546 pp. (In Russian)

[9] Filimonov M.Yu., “Representation of solutions of initial-boundary value problems for nonlinear partial differential equations by the method of special series”, Differ. Equations, 39:8 (2003), 1159–1166 | DOI

[10] Kazakov A.L., “On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation”, Sib. Elektron. Mat. Izv., 16 (2019), 1057–1068 (In Russian) | DOI

[11] Kazakov A.L., Lempert A.A., “Exact solutions of diffusion wave type for a nonlinear second-order parabolic equation with degeneration”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 28, no. 3, 2022, 114–128 (In Russian) | DOI

[12] Kudinov I.V., Kudinov V.A., Analytical Solutions of Parabolic and Hyperbolic Equations of Heat and Mass Transfer, Infra-M, M., 2013, 391 pp. (In Russian)

[13] Andreev V.K., Stepanova I.V., “Non-stationary unidirectional motion of binary mixture in long flat layer”, Int. J. Appl. Comput. Math., 6:6 (2020), 169 | DOI

[14] Friedman A., Partial Differential Equations of Parabolic Type, Mir, M., 1968, 427 pp. (In Russian)

[15] Stepanova I.V., Zalizniak V.E., “Numerical solution of nonstationary problem for convection of binary mixture in horizontal layer”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 33:2 (2023), 365–381 (In Russian) | DOI

[16] Il'in V.A., “The solvability of mixed problems for hyperbolic and parabolic equations”, Russ. Math. Surv., 15:2 (1960), 85–142 | DOI

[17] Polyanin A.D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Fizmatlit, M., 2001, 592 pp. (In Russian)

[18] Vladimirov V.S., Equations of Mathematical Physics, Nauka, M., 1967, 512 pp. (In Russian)

[19] Tikhonov A.N., Samarskii A.A., Equations of Mathematical Physics, Nauka, M., 2004, 742 pp. (In Russian)

[20] Alekseev G.V., Classical Methods of Mathematical Physics, Izd. Dal'nevost. Univ., Vladivostok, 2003, 416 pp. (In Russian)

[21] Arsenin V.Ya., Methods of Mathematical Physics and Special Functions, Nauka, M., 1984, 384 pp. (In Russian)

[22] Mikhlin S.G., Linear Partial Differential Equations, Vyssh. Shk., M., 1977, 431 pp. (In Russian)

[23] Andreev V.K., “On the solution of an inverse problem simulating two-dimensional motion of a viscous fluid”, Vestn. YuUrGU. Ser. Mat. Model. Program., 9:4 (2016), 5–16 (In Russian) | DOI

[24] Stepanova I.V., “On thermodiffusion of binary mixture in a horizontal channel at inhomogeneous heating the walls”, J. Sib. Fed. Univ. Math. Phys., 15:6 (2022), 776–784 | DOI