Voir la notice du chapitre de livre
@article{UZKU_2024_166_1_a0,
author = {V. K. Andreev and I. V. Stepanova},
title = {A priori and a posteriori estimates for solving one evolutionary inverse problem},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {5--21},
year = {2024},
volume = {166},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a0/}
}
TY - JOUR AU - V. K. Andreev AU - I. V. Stepanova TI - A priori and a posteriori estimates for solving one evolutionary inverse problem JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2024 SP - 5 EP - 21 VL - 166 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a0/ LA - ru ID - UZKU_2024_166_1_a0 ER -
%0 Journal Article %A V. K. Andreev %A I. V. Stepanova %T A priori and a posteriori estimates for solving one evolutionary inverse problem %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2024 %P 5-21 %V 166 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a0/ %G ru %F UZKU_2024_166_1_a0
V. K. Andreev; I. V. Stepanova. A priori and a posteriori estimates for solving one evolutionary inverse problem. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 166 (2024) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/UZKU_2024_166_1_a0/
[1] Andreev V.K., Gaponenko Yu.A., Goncharova O.N., Pukhnachev V.V., Mathematical Models of Convection, Fizmatlit, M., 2008, 368 pp. (In Russian)
[2] Andreev V.K., Stepanova I.V., “On the conditions for existence of unidirectional motions of binary mixtures in the Oberbeck–Boussinesq model”, J. Appl. Ind. Math., 13:2 (2019), 185–193 | DOI | DOI
[3] Kirdyashkin A.G., “Thermogravitational and thermocapillary flows in a horizontal liquid layer under the conditions of a horizontal temperature gradient”, Int. J. Heat Mass Transfer., 27:8 (1984), 1205–1218 | DOI
[4] Kozhanov A.I., “Parabolic equations with an unknown time-dependent coefficient”, Comput. Math. Math. Phys., 45:12 (2005), 2085–2101
[5] Iskenderov A.D., Akhundov A.Ya., “Inverse problem for a linear system of parabolic equations”, Dokl. Math., 79:1 (2009), 73–75 | DOI
[6] Kerimov N.B., Ismailov M.I., “An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions”, J. Math. Anal. Appl., 396:2 (2012), 546–554 | DOI
[7] Andreev V.K., Stepanova I.V., “Inverse problem for source function in parabolic equation at Neumann boundary conditions”, J. Sib. Fed. Univ. Math. Phys., 14:4 (2021), 445–451 | DOI
[8] Sidorov A.F., Selected Works: Mathematics. Mechanics, Fizmatlit, M., 2001, 546 pp. (In Russian)
[9] Filimonov M.Yu., “Representation of solutions of initial-boundary value problems for nonlinear partial differential equations by the method of special series”, Differ. Equations, 39:8 (2003), 1159–1166 | DOI
[10] Kazakov A.L., “On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation”, Sib. Elektron. Mat. Izv., 16 (2019), 1057–1068 (In Russian) | DOI
[11] Kazakov A.L., Lempert A.A., “Exact solutions of diffusion wave type for a nonlinear second-order parabolic equation with degeneration”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 28, no. 3, 2022, 114–128 (In Russian) | DOI
[12] Kudinov I.V., Kudinov V.A., Analytical Solutions of Parabolic and Hyperbolic Equations of Heat and Mass Transfer, Infra-M, M., 2013, 391 pp. (In Russian)
[13] Andreev V.K., Stepanova I.V., “Non-stationary unidirectional motion of binary mixture in long flat layer”, Int. J. Appl. Comput. Math., 6:6 (2020), 169 | DOI
[14] Friedman A., Partial Differential Equations of Parabolic Type, Mir, M., 1968, 427 pp. (In Russian)
[15] Stepanova I.V., Zalizniak V.E., “Numerical solution of nonstationary problem for convection of binary mixture in horizontal layer”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 33:2 (2023), 365–381 (In Russian) | DOI
[16] Il'in V.A., “The solvability of mixed problems for hyperbolic and parabolic equations”, Russ. Math. Surv., 15:2 (1960), 85–142 | DOI
[17] Polyanin A.D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Fizmatlit, M., 2001, 592 pp. (In Russian)
[18] Vladimirov V.S., Equations of Mathematical Physics, Nauka, M., 1967, 512 pp. (In Russian)
[19] Tikhonov A.N., Samarskii A.A., Equations of Mathematical Physics, Nauka, M., 2004, 742 pp. (In Russian)
[20] Alekseev G.V., Classical Methods of Mathematical Physics, Izd. Dal'nevost. Univ., Vladivostok, 2003, 416 pp. (In Russian)
[21] Arsenin V.Ya., Methods of Mathematical Physics and Special Functions, Nauka, M., 1984, 384 pp. (In Russian)
[22] Mikhlin S.G., Linear Partial Differential Equations, Vyssh. Shk., M., 1977, 431 pp. (In Russian)
[23] Andreev V.K., “On the solution of an inverse problem simulating two-dimensional motion of a viscous fluid”, Vestn. YuUrGU. Ser. Mat. Model. Program., 9:4 (2016), 5–16 (In Russian) | DOI
[24] Stepanova I.V., “On thermodiffusion of binary mixture in a horizontal channel at inhomogeneous heating the walls”, J. Sib. Fed. Univ. Math. Phys., 15:6 (2022), 776–784 | DOI