Fundamental solutions of the equations of classical and generalized heat conduction models
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 4, pp. 404-414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article presents the mathematical formulations of transient heat conduction problems corresponding to the models of classical heat conduction using the Fourier law and generalized heat conduction based on the Cattaneo–Vernotta–Lykov law (Maxwell–Cattaneo model), as well as the generalized Green–Nagdy type II and III models. The Fourier transforms in spatial coordinates and the Laplace transforms in time were used to obtain the fundamental solutions of the equations of the Maxwell–Cattaneo and Green–Nagdy type II and III models of classical and generalized heat conduction. The results were displayed graphically and analyzed. Differences between the considered heat conduction models were shown, and suggestions for their practical application were given.
Keywords: classical heat conduction, Maxwell–Cattaneo theory, Cattaneo–Vernott–Lykov law, Green–Nagdy theory, generalized heat conduction, differential equations, integral transformations.
@article{UZKU_2023_165_4_a4,
     author = {A. A. Orekhov and L. N. Rabinsky and G. V. Fedotenkov},
     title = {Fundamental solutions of the equations of classical and generalized heat conduction models},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {404--414},
     year = {2023},
     volume = {165},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a4/}
}
TY  - JOUR
AU  - A. A. Orekhov
AU  - L. N. Rabinsky
AU  - G. V. Fedotenkov
TI  - Fundamental solutions of the equations of classical and generalized heat conduction models
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 404
EP  - 414
VL  - 165
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a4/
LA  - ru
ID  - UZKU_2023_165_4_a4
ER  - 
%0 Journal Article
%A A. A. Orekhov
%A L. N. Rabinsky
%A G. V. Fedotenkov
%T Fundamental solutions of the equations of classical and generalized heat conduction models
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 404-414
%V 165
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a4/
%G ru
%F UZKU_2023_165_4_a4
A. A. Orekhov; L. N. Rabinsky; G. V. Fedotenkov. Fundamental solutions of the equations of classical and generalized heat conduction models. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 4, pp. 404-414. http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a4/

[1] Vestyak V.A., Zemskov A.V., Tarlakovskii D.V., Fedotenkov G.V., Mathematical Foundations of Thermoelasticity, MAI, M., 2021, 92 pp. (In Russian)

[2] Zemskov A.V., Tarlakovskii D.V., Fedotenkov G.V., Thermoelasticity. One-Dimensional Non-Stationary Problems, A Text Book, MAI, M., 2023, 95 pp. (In Russian)

[3] Cataneo C., “A form of heat conduction equations which eliminates the paradox of instantaneous propagation”, C. R. Acad. Sci. Paris, 247 (1958), 431–433 | MR

[4] Vernotte P., “Les paradoxes de la théorie continue de l'équation de la chaleur”, C. R. Acad. Sci. Paris, 246:22 (1985), 3154–3155 (In French) | MR

[5] Lykov A.V., Theory of Heat Conduction, Vyssh. Shk., M., 1967, 600 pp. (In Russian)

[6] Green A.E., Naghdi P.M., “A re-examination of the basic postulates of thermomechanics”, Proc. R. Soc. London, Ser. A, 432:1885 (1991), 171–194 | DOI | MR | Zbl

[7] Green A.E., Naghdi P.M., “Thermoelasticity without energy dissipation”, J. Elasticity, 31 (1993), 189–208 | DOI | MR | Zbl

[8] Green A.E., Naghdi P.M., “On undamped heat waves in an elastic solid”, J. Therm. Stresses, 15:2 (1992), 253–264 | DOI | MR

[9] Orekhov A., Rabinskiy L., Fedotenkov G., “Analytical model of heating an isotropic half-space by a moving laser source with a Gaussian distribution”, Symmetry, 14:4 (2022), 650 | DOI

[10] Fedotenkov G., Rabinskiy L., Lurie S., “Conductive heat transfer in materials under intense heat flows”, Symmetry, 14:9 (2022), 1950 | DOI

[11] Orekhov A.A., Rabinskiy L.N., Fedotenkov G.V., Hein T.Z., “Heating of a half-space by a moving thermal laser pulse source”, Lobachevskii J. Math., 60:8 (2021), 1912–1919 | DOI | MR

[12] Dobryanskiy V.N., Fedotenkov G.V., Orekhov A.A., Rabinskiy L.N., “Estimation of finite heat distribution rate in the process of intensive heating of solids”, Lobachevskii J. Math., 63:7 (2022), 1832–1841 | DOI | MR