Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 4, pp. 389-403 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article considers a variant of the heat conduction theory of thermal conductivity, in which the heat flux pseudovector has a weight of $-1$. The pseudoinvariants associated to the heat flux pseudovector are sensitive to mirror reflections and inversions of three-dimensional space. The primary purpose of the study was to find a heat flux vector that is algebraically equivalent to the microrotation pseudovector and to measure elementary volumes and areas using pseudoinvariants that are sensitive to mirror reflections. To represent spinor displacements, a contravariant microrotation pseudovector with a weight of $+1$ was selected. Thus, the heat flux and mass density were expressed as odd-weight pseudotensors. The Helmholtz free energy per unit doublet pseudoinvariant volume was employed as the thermodynamic state potential of the following functional arguments: absolute temperature, symmetric parts, and accompanying vectors for the linear asymmetric strain tensor and the wryness pseudotensor. The results obtained show that the thermal conductivity coefficient and heat capacity of elastic micropolar solids are pseudoscalars of odd weight, indicating their sensitivity to mirror reflections.
Keywords: heat conduction, micropolarity, mirror reflection, semi-isotropic solid.
Mots-clés : volume tensor element, heat flux pseudotensor
@article{UZKU_2023_165_4_a3,
     author = {E. V. Murashkin and Yu. N. Radayev},
     title = {Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {389--403},
     year = {2023},
     volume = {165},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a3/}
}
TY  - JOUR
AU  - E. V. Murashkin
AU  - Yu. N. Radayev
TI  - Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 389
EP  - 403
VL  - 165
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a3/
LA  - ru
ID  - UZKU_2023_165_4_a3
ER  - 
%0 Journal Article
%A E. V. Murashkin
%A Yu. N. Radayev
%T Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 389-403
%V 165
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a3/
%G ru
%F UZKU_2023_165_4_a3
E. V. Murashkin; Yu. N. Radayev. Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 4, pp. 389-403. http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a3/

[1] Lakes R., “Elastic and viscoelastic behavior of chiral materials”, Int. J. Mech. Sci, 43:7 (2001), 1579–1589 | DOI | Zbl

[2] Mackay T.G., Lakhtakia A., “Negatively refracting chiral metamaterials: A review”, SPIE Rev, 1:1 (2010), 018003 | DOI

[3] Tomar S.K., Khurana A., “Wave propagation in thermo-chiral elastic medium”, Appl. Math. Modell, 37:22 (2013), 9409–9418 | DOI | MR | Zbl

[4] Besdo D., “Ein beitrag zur nichtlinearen Theorie des Cosserat–Kontinuums”, Acta Mech, 20:1 (1974), 105–131 (In German) | DOI | MR | Zbl

[5] Nowacki W., Theory of Micropolar Elasticity, Springer, Berlin, 1972, 285 pp. | Zbl

[6] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, 383 pp. | MR | Zbl

[7] Dyszlewicz J., Micropolar Theory of Elasticity, Springer, Berlin–Heidelberg, 2004, 345 pp. | DOI | MR | Zbl

[8] Truesdell C., Toupin R., “The classical field theories”, Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, III/1, ed. S. Flügge, Springer, Berlin–Göttingen–Heidelberg, 1960, 226–902 | DOI | MR

[9] Schouten J.A., Tensor Analysis for Physicists, Nauka, M., 1965, 456 pp. (In Russian)

[10] Sokolnikoff I.S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, Nauka, M., 1971, 376 pp. (In Russian) | MR

[11] Synge J.L., Schild A., Tensor Calculus, Dover Publ., New York, 1978, 334 pp. | MR | Zbl

[12] Das A.J., Tensors. The Mathematics of Relativity Theory and Continuum Mechanics, Springer Sci. Bus. Media, Berlin, 2007, 290 pp. | DOI | MR | Zbl

[13] Gurevich G.B., Foundations of the Theory of Algebraic Invariants, OGIZ, GITTL, M.–L., 1948, 408 pp. (In Russian) | MR

[14] Veblen O., Thomas T.Y., “Extensions of relative tensors”, Trans. Am. Math. Soc., 26:3 (1924), 373–377 | DOI | MR

[15] Veblen O., Invariants of Quadratic Differential Forms, Izd. Inostr. Lit., M., 1948, 139 pp. (In Russian)

[16] Radayev Y.N., Murashkin E.V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Probl. Prochn. Plast., 80:4 (2020), 399–412 (In Russian) | DOI

[17] Murashkin E.V., Radayev Y.N., “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki, 24:3 (2020), 424–444 | DOI | Zbl

[18] Murashkin E.V., Radayev Y.N., “On the theory of linear micropolar hemitropic media”, Vestn. ChGPU im. I.Ya. Yakovleva. Ser. Mekh. Predel'nogo Sostoyaniya, 2020, no. 4(46), 16–24 (In Russian) | DOI

[19] Murashkin E.V., Radaev Y.N., “Coupled thermoelasticity of hemitropic media. Pseudotensor formulation”, Mech. Solids, 58:3 (2023), 802–813 | DOI | Zbl

[20] Murashkin E.V., Radaev Y.N., “A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity”, Lobachevskii J. Math., 44:6 (2023), 2440–2449 | DOI | MR | Zbl

[21] Radaev Y.N., “Tensors with constant components in the constitutive equations of hemitropic micropolar solids”, Mech. Solids, 58:5 (2023), 1517–1527 | DOI

[22] Murashkin E.V., Radaev Y.N., “Schouten's force stress tensor and affinor densities of positive weight”, Probl. Prochn. Plast., 84:4 (2022), 545–558 (In Russian) | DOI

[23] Murashkin E.V., Radayev Y.N., “The Schouten force stresses in continuum mechanics formulations”, Mech. Solids, 58:1 (2023), 153–160 | DOI | Zbl

[24] Murashkin E.V., Radayev Y.N., “Algebraic algorithm for the systematic reduction of one-point pseudotensors to absolute tensors”, Vestn. ChGPU im. I.Ya. Yakovleva. Ser. Mekh. Predel'nogo Sostoyaniya, 2022, no. 1(51), 17–26 | DOI

[25] Murashkin E.V., Radayev Y.N., “Covariantly constant tensors in Euclid spaces. Elements of the theory”, Vestn. ChGPU im. I.Ya. Yakovleva. Ser. Mekh. Predel'nogo Sostoyaniya, 2022, no. 2(52), 106–115 (In Russian) | DOI | MR

[26] Murashkin E.V., Radayev Y.N., “Covariantly constant tensors in Euclid spaces. Applications to continuum mechanics”, Vestn. ChGPU im. I.Ya. Yakovleva. Ser. Mekh. Predel'nogo Sostoyaniya, no. 2:52 (2022), 118–127 | DOI | MR

[27] Rosenfeld B.A., Multidimensional Spaces, Nauka, M., 1966, 648 pp. (In Russian) | MR

[28] Poincar\'{e, “H.} Sur les résidus des intégrales doubles”, Acta Math, 6 (1887), 321–380 (In French) | DOI | MR

[29] Poincaré H., “Analysis situs”, J. École Polytech, 2:1 (1895), 1–123 (In French)

[30] Murashkin E.V., Radayev Y.N., “On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space”, Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki, 25:4 (2021), 776–786 | DOI | Zbl

[31] Murashkin E.V., Radaev Y.N., “On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space”, Mech. Solids, 57:2 (2022), 205–213 | DOI | MR | Zbl

[32] Murashkin E.V., “On the boundary conditions formulation in the problems of synthesis of woven 3D materials”, Vestn. ChGPU im. I.Ya. Yakovleva. Ser. Mekh. Predel'nogo Sostoyaniya, no. 1:47 (2021), 114–121 (In Russian) | DOI