Mots-clés : volume tensor element, heat flux pseudotensor
@article{UZKU_2023_165_4_a3,
author = {E. V. Murashkin and Yu. N. Radayev},
title = {Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {389--403},
year = {2023},
volume = {165},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a3/}
}
TY - JOUR AU - E. V. Murashkin AU - Yu. N. Radayev TI - Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2023 SP - 389 EP - 403 VL - 165 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a3/ LA - ru ID - UZKU_2023_165_4_a3 ER -
%0 Journal Article %A E. V. Murashkin %A Yu. N. Radayev %T Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2023 %P 389-403 %V 165 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a3/ %G ru %F UZKU_2023_165_4_a3
E. V. Murashkin; Yu. N. Radayev. Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 4, pp. 389-403. http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a3/
[1] Lakes R., “Elastic and viscoelastic behavior of chiral materials”, Int. J. Mech. Sci, 43:7 (2001), 1579–1589 | DOI | Zbl
[2] Mackay T.G., Lakhtakia A., “Negatively refracting chiral metamaterials: A review”, SPIE Rev, 1:1 (2010), 018003 | DOI
[3] Tomar S.K., Khurana A., “Wave propagation in thermo-chiral elastic medium”, Appl. Math. Modell, 37:22 (2013), 9409–9418 | DOI | MR | Zbl
[4] Besdo D., “Ein beitrag zur nichtlinearen Theorie des Cosserat–Kontinuums”, Acta Mech, 20:1 (1974), 105–131 (In German) | DOI | MR | Zbl
[5] Nowacki W., Theory of Micropolar Elasticity, Springer, Berlin, 1972, 285 pp. | Zbl
[6] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, 383 pp. | MR | Zbl
[7] Dyszlewicz J., Micropolar Theory of Elasticity, Springer, Berlin–Heidelberg, 2004, 345 pp. | DOI | MR | Zbl
[8] Truesdell C., Toupin R., “The classical field theories”, Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, III/1, ed. S. Flügge, Springer, Berlin–Göttingen–Heidelberg, 1960, 226–902 | DOI | MR
[9] Schouten J.A., Tensor Analysis for Physicists, Nauka, M., 1965, 456 pp. (In Russian)
[10] Sokolnikoff I.S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, Nauka, M., 1971, 376 pp. (In Russian) | MR
[11] Synge J.L., Schild A., Tensor Calculus, Dover Publ., New York, 1978, 334 pp. | MR | Zbl
[12] Das A.J., Tensors. The Mathematics of Relativity Theory and Continuum Mechanics, Springer Sci. Bus. Media, Berlin, 2007, 290 pp. | DOI | MR | Zbl
[13] Gurevich G.B., Foundations of the Theory of Algebraic Invariants, OGIZ, GITTL, M.–L., 1948, 408 pp. (In Russian) | MR
[14] Veblen O., Thomas T.Y., “Extensions of relative tensors”, Trans. Am. Math. Soc., 26:3 (1924), 373–377 | DOI | MR
[15] Veblen O., Invariants of Quadratic Differential Forms, Izd. Inostr. Lit., M., 1948, 139 pp. (In Russian)
[16] Radayev Y.N., Murashkin E.V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Probl. Prochn. Plast., 80:4 (2020), 399–412 (In Russian) | DOI
[17] Murashkin E.V., Radayev Y.N., “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki, 24:3 (2020), 424–444 | DOI | Zbl
[18] Murashkin E.V., Radayev Y.N., “On the theory of linear micropolar hemitropic media”, Vestn. ChGPU im. I.Ya. Yakovleva. Ser. Mekh. Predel'nogo Sostoyaniya, 2020, no. 4(46), 16–24 (In Russian) | DOI
[19] Murashkin E.V., Radaev Y.N., “Coupled thermoelasticity of hemitropic media. Pseudotensor formulation”, Mech. Solids, 58:3 (2023), 802–813 | DOI | Zbl
[20] Murashkin E.V., Radaev Y.N., “A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity”, Lobachevskii J. Math., 44:6 (2023), 2440–2449 | DOI | MR | Zbl
[21] Radaev Y.N., “Tensors with constant components in the constitutive equations of hemitropic micropolar solids”, Mech. Solids, 58:5 (2023), 1517–1527 | DOI
[22] Murashkin E.V., Radaev Y.N., “Schouten's force stress tensor and affinor densities of positive weight”, Probl. Prochn. Plast., 84:4 (2022), 545–558 (In Russian) | DOI
[23] Murashkin E.V., Radayev Y.N., “The Schouten force stresses in continuum mechanics formulations”, Mech. Solids, 58:1 (2023), 153–160 | DOI | Zbl
[24] Murashkin E.V., Radayev Y.N., “Algebraic algorithm for the systematic reduction of one-point pseudotensors to absolute tensors”, Vestn. ChGPU im. I.Ya. Yakovleva. Ser. Mekh. Predel'nogo Sostoyaniya, 2022, no. 1(51), 17–26 | DOI
[25] Murashkin E.V., Radayev Y.N., “Covariantly constant tensors in Euclid spaces. Elements of the theory”, Vestn. ChGPU im. I.Ya. Yakovleva. Ser. Mekh. Predel'nogo Sostoyaniya, 2022, no. 2(52), 106–115 (In Russian) | DOI | MR
[26] Murashkin E.V., Radayev Y.N., “Covariantly constant tensors in Euclid spaces. Applications to continuum mechanics”, Vestn. ChGPU im. I.Ya. Yakovleva. Ser. Mekh. Predel'nogo Sostoyaniya, no. 2:52 (2022), 118–127 | DOI | MR
[27] Rosenfeld B.A., Multidimensional Spaces, Nauka, M., 1966, 648 pp. (In Russian) | MR
[28] Poincar\'{e, “H.} Sur les résidus des intégrales doubles”, Acta Math, 6 (1887), 321–380 (In French) | DOI | MR
[29] Poincaré H., “Analysis situs”, J. École Polytech, 2:1 (1895), 1–123 (In French)
[30] Murashkin E.V., Radayev Y.N., “On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space”, Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki, 25:4 (2021), 776–786 | DOI | Zbl
[31] Murashkin E.V., Radaev Y.N., “On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space”, Mech. Solids, 57:2 (2022), 205–213 | DOI | MR | Zbl
[32] Murashkin E.V., “On the boundary conditions formulation in the problems of synthesis of woven 3D materials”, Vestn. ChGPU im. I.Ya. Yakovleva. Ser. Mekh. Predel'nogo Sostoyaniya, no. 1:47 (2021), 114–121 (In Russian) | DOI