Incompatible deformations of elastic plates
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 4, pp. 361-388

Voir la notice du chapitre de livre provenant de la source Math-Net.Ru

This article considers the methods for mathematical modeling of incompatible finite deformations of elastic plates by using the principles of the differential geometry theory underlying continuously distributed defects. Equilibrium equations were derived by asymptotic expansions of the finite strain measures with respect to two small parameters. One parameter defines the order of smallness of displacements from the reference shape (self-stressed state), while the other specifies the thickness. Asymptotic orders were different for the deflections and displacements in the plate plane, as well as for their derivatives. They were selected in such a way that, with additional assumptions on the possibility of ignoring certain terms in the resulting expressions and the compatibility of deformations, the equations could be reduced to the system of Föppl–von Kármán equations.
Keywords: theory of thin-walled elastic structures, incompatible finite deformations of elastic plates, mathematical modeling methods, theory of continuously distributed defects, numerical and analytical method, iteration algorithm.
Mots-clés : system of Föppl–von Kármán equations
@article{UZKU_2023_165_4_a2,
     author = {S. A. Lychev},
     title = {Incompatible deformations of elastic plates},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {361--388},
     publisher = {mathdoc},
     volume = {165},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a2/}
}
TY  - JOUR
AU  - S. A. Lychev
TI  - Incompatible deformations of elastic plates
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 361
EP  - 388
VL  - 165
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a2/
LA  - ru
ID  - UZKU_2023_165_4_a2
ER  - 
%0 Journal Article
%A S. A. Lychev
%T Incompatible deformations of elastic plates
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 361-388
%V 165
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a2/
%G ru
%F UZKU_2023_165_4_a2
S. A. Lychev. Incompatible deformations of elastic plates. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 4, pp. 361-388. http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a2/