Mots-clés : interface
@article{UZKU_2023_165_4_a0,
author = {A. A. Azanov and E. N. Lemeshkova},
title = {Qualitative properties of the solution of a conjugate problem of thermal convection},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {326--343},
year = {2023},
volume = {165},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a0/}
}
TY - JOUR AU - A. A. Azanov AU - E. N. Lemeshkova TI - Qualitative properties of the solution of a conjugate problem of thermal convection JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2023 SP - 326 EP - 343 VL - 165 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a0/ LA - ru ID - UZKU_2023_165_4_a0 ER -
%0 Journal Article %A A. A. Azanov %A E. N. Lemeshkova %T Qualitative properties of the solution of a conjugate problem of thermal convection %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2023 %P 326-343 %V 165 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a0/ %G ru %F UZKU_2023_165_4_a0
A. A. Azanov; E. N. Lemeshkova. Qualitative properties of the solution of a conjugate problem of thermal convection. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 4, pp. 326-343. http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a0/
[1] Lin C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Ration. Mech. Anal, 1 (1957), 391–395 | DOI | MR
[2] Sidorov A.F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, J. Appl. Mech. Tech. Phys., 30 (1989), 197–203 | DOI | MR
[3] Pukhnachev V.V., “Model of a viscous layer deformation by thermocapillary forces”, Eur. J. Appl. Math., 13:2 (2002), 205–224 | DOI | MR | Zbl
[4] Andreev V.K., Gaponenko Yu.A., Goncharova O.N., Pukhnachev V.V., Mathematical Models of Convection, De Gruyter, Berlin–Boston, 2020, 417 pp. | MR | Zbl
[5] Rezanova E., “Numerical modelling of heat transfer in the layer of viscous incompressible liquid with free boundaries”, EPJ Web Conf, 159 (2017), 00047 | DOI
[6] Aristov S.N., Knyazev D.V., Polyanin A.D., “Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662 | DOI | MR
[7] Azanov A.A., Andreev V.K., “A solution of the problem of creeping motion of a liquid with free boundary and velocity fieldof a special type in a three-dimensional band”, Some Key Problems of Modern Mathematics and Mathematics Education, Herzen Lectures, 2021, Proc. Sci. Conf., Izd. RGPU im. A.I. Gertsena, St. Petersburg, 2021, 42–54 (In Russian) | MR
[8] Andreev V.K., Lemeshkova E.N., “Two-layer steady creeping thermocapillary flow in a three-dimensional channel”, J. Appl. Mech. Tech. Phys., 63:1 (2022), 82–88 | DOI | MR | Zbl
[9] Andreev V.K., “On a creeping 3D convective motion of fluids with an isothermal interface”, J. Sib. Fed. Univ. Math $\$ Phys., 13:6 (2020), 661–669 | DOI | MR
[10] Andreev V.K., “A solution of 3d equations of thermal convection and its interpretation”, Some Key Problems of Modern Mathematics and Mathematics Education, Herzen Lectures, 2020, Proc. Sci. Conf., RGPU im. A.I. Gertsena, St. Petersburg, 2020, 4–8 (In Russian)
[11] Andreev V.K., Lemeshkova E.N., “Thermal convection of two immiscible liquids in a 3D channel with a velocity field of a special type”, Prikl. Mat. Mekh., 87:2 (2023), 200–210 (In Russian) | DOI
[12] Andreev V.K., Lemeshkova E.N., Linear Problems of Convective Motions with Interfaces, Sib. Fed. Univ., 2018, 204 pp. (In Russian)
[13] Zeytounian R.Kh., “The Benard-Marangoni thermocapillary-instability problem”, Phys.-Usp., 41:3 (1998), 241–267 | DOI | DOI | MR
[14] Andreev V.K., “On inequalities of the Friedrichs type for combined domains”, Zh. Sib. Fed. Univ. Mat. Fiz., 2:2 (2009), 146–157 (In Russian) | Zbl
[15] Howann F., “Der Einfluss grosser Zähigkeit bei der Strömung um den Zylinder und um die Kugel”, Z. Angew. Math. Mech., 16:3 (1936), 153–164 (In German) | DOI
[16] Davey A., “Boundary-layer flow at a saddle point of attachment”, J. Fluid Mech., 10:4 (1961), 593–610 | DOI | MR | Zbl
[17] Gorla R.S.R., “Unsteady laminar axisymmetric stagnation flow over a circular cylinder”, Dev. Mech., 9 (1977), 286–288
[18] Bekezhanova V.B., Andreev V.K., Shefer I.A., “Influence of heat defect on the characteristics of a two-layer flow with the Hiemenz-type velocity”, Interfacial Phenom. Heat Transfer, 7:4 (2019), 345–364 | DOI