Qualitative properties of the solution of a conjugate problem of thermal convection
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 4, pp. 326-343
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
The joint convection of two viscous heat-conducting liquids in a three-dimensional layer bounded by flat solid walls was studied. The upper wall is thermally insulated, and the lower wall has a non-stationary temperature field. The liquids are immiscible and separated by a flat interface with complex conjugation conditions set on it. The evolution of this system in each liquid was described by the Oberbeck–Boussinesq equations. The solution of the problem was sought for velocities that are linear in two coordinates and temperature fields that are quadratic functions of the same coordinates. Thus, the problem was reduced to a system of 10 nonlinear integro-differential equations. Its conjugate and inverse nature is determined by the four functions of time. Integral redefinition conditions were set to find them. The physical meaning of the integral conditions is the closeness of the flow. The inverse initial-boundary value problem describes convection near the temperature extremum point on the lower solid wall in a two-layer system. For small Marangoni numbers, the problem was approximated linearly (the Marangoni number is analogous to the Reynolds number in the Navier–Stokes equations). Using the obtained a priori estimates, sufficient conditions were identified for the non-stationary solution to become a stationary one over time.
Keywords:
Oberbeck–Boussinesq model, thermal convection, thermocapillarity, inverse problem, a priori estimates.
Mots-clés : interface
Mots-clés : interface
@article{UZKU_2023_165_4_a0,
author = {A. A. Azanov and E. N. Lemeshkova},
title = {Qualitative properties of the solution of a conjugate problem of thermal convection},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {326--343},
publisher = {mathdoc},
volume = {165},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a0/}
}
TY - JOUR AU - A. A. Azanov AU - E. N. Lemeshkova TI - Qualitative properties of the solution of a conjugate problem of thermal convection JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2023 SP - 326 EP - 343 VL - 165 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a0/ LA - ru ID - UZKU_2023_165_4_a0 ER -
%0 Journal Article %A A. A. Azanov %A E. N. Lemeshkova %T Qualitative properties of the solution of a conjugate problem of thermal convection %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2023 %P 326-343 %V 165 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a0/ %G ru %F UZKU_2023_165_4_a0
A. A. Azanov; E. N. Lemeshkova. Qualitative properties of the solution of a conjugate problem of thermal convection. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 4, pp. 326-343. http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a0/