Qualitative properties of the solution of a conjugate problem of thermal convection
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 4, pp. 326-343 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The joint convection of two viscous heat-conducting liquids in a three-dimensional layer bounded by flat solid walls was studied. The upper wall is thermally insulated, and the lower wall has a non-stationary temperature field. The liquids are immiscible and separated by a flat interface with complex conjugation conditions set on it. The evolution of this system in each liquid was described by the Oberbeck–Boussinesq equations. The solution of the problem was sought for velocities that are linear in two coordinates and temperature fields that are quadratic functions of the same coordinates. Thus, the problem was reduced to a system of 10 nonlinear integro-differential equations. Its conjugate and inverse nature is determined by the four functions of time. Integral redefinition conditions were set to find them. The physical meaning of the integral conditions is the closeness of the flow. The inverse initial-boundary value problem describes convection near the temperature extremum point on the lower solid wall in a two-layer system. For small Marangoni numbers, the problem was approximated linearly (the Marangoni number is analogous to the Reynolds number in the Navier–Stokes equations). Using the obtained a priori estimates, sufficient conditions were identified for the non-stationary solution to become a stationary one over time.
Keywords: Oberbeck–Boussinesq model, thermal convection, thermocapillarity, inverse problem, a priori estimates.
Mots-clés : interface
@article{UZKU_2023_165_4_a0,
     author = {A. A. Azanov and E. N. Lemeshkova},
     title = {Qualitative properties of the solution of a conjugate problem of thermal convection},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {326--343},
     year = {2023},
     volume = {165},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a0/}
}
TY  - JOUR
AU  - A. A. Azanov
AU  - E. N. Lemeshkova
TI  - Qualitative properties of the solution of a conjugate problem of thermal convection
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 326
EP  - 343
VL  - 165
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a0/
LA  - ru
ID  - UZKU_2023_165_4_a0
ER  - 
%0 Journal Article
%A A. A. Azanov
%A E. N. Lemeshkova
%T Qualitative properties of the solution of a conjugate problem of thermal convection
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 326-343
%V 165
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a0/
%G ru
%F UZKU_2023_165_4_a0
A. A. Azanov; E. N. Lemeshkova. Qualitative properties of the solution of a conjugate problem of thermal convection. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 4, pp. 326-343. http://geodesic.mathdoc.fr/item/UZKU_2023_165_4_a0/

[1] Lin C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Ration. Mech. Anal, 1 (1957), 391–395 | DOI | MR

[2] Sidorov A.F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, J. Appl. Mech. Tech. Phys., 30 (1989), 197–203 | DOI | MR

[3] Pukhnachev V.V., “Model of a viscous layer deformation by thermocapillary forces”, Eur. J. Appl. Math., 13:2 (2002), 205–224 | DOI | MR | Zbl

[4] Andreev V.K., Gaponenko Yu.A., Goncharova O.N., Pukhnachev V.V., Mathematical Models of Convection, De Gruyter, Berlin–Boston, 2020, 417 pp. | MR | Zbl

[5] Rezanova E., “Numerical modelling of heat transfer in the layer of viscous incompressible liquid with free boundaries”, EPJ Web Conf, 159 (2017), 00047 | DOI

[6] Aristov S.N., Knyazev D.V., Polyanin A.D., “Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662 | DOI | MR

[7] Azanov A.A., Andreev V.K., “A solution of the problem of creeping motion of a liquid with free boundary and velocity fieldof a special type in a three-dimensional band”, Some Key Problems of Modern Mathematics and Mathematics Education, Herzen Lectures, 2021, Proc. Sci. Conf., Izd. RGPU im. A.I. Gertsena, St. Petersburg, 2021, 42–54 (In Russian) | MR

[8] Andreev V.K., Lemeshkova E.N., “Two-layer steady creeping thermocapillary flow in a three-dimensional channel”, J. Appl. Mech. Tech. Phys., 63:1 (2022), 82–88 | DOI | MR | Zbl

[9] Andreev V.K., “On a creeping 3D convective motion of fluids with an isothermal interface”, J. Sib. Fed. Univ. Math $\$ Phys., 13:6 (2020), 661–669 | DOI | MR

[10] Andreev V.K., “A solution of 3d equations of thermal convection and its interpretation”, Some Key Problems of Modern Mathematics and Mathematics Education, Herzen Lectures, 2020, Proc. Sci. Conf., RGPU im. A.I. Gertsena, St. Petersburg, 2020, 4–8 (In Russian)

[11] Andreev V.K., Lemeshkova E.N., “Thermal convection of two immiscible liquids in a 3D channel with a velocity field of a special type”, Prikl. Mat. Mekh., 87:2 (2023), 200–210 (In Russian) | DOI

[12] Andreev V.K., Lemeshkova E.N., Linear Problems of Convective Motions with Interfaces, Sib. Fed. Univ., 2018, 204 pp. (In Russian)

[13] Zeytounian R.Kh., “The Benard-Marangoni thermocapillary-instability problem”, Phys.-Usp., 41:3 (1998), 241–267 | DOI | DOI | MR

[14] Andreev V.K., “On inequalities of the Friedrichs type for combined domains”, Zh. Sib. Fed. Univ. Mat. Fiz., 2:2 (2009), 146–157 (In Russian) | Zbl

[15] Howann F., “Der Einfluss grosser Zähigkeit bei der Strömung um den Zylinder und um die Kugel”, Z. Angew. Math. Mech., 16:3 (1936), 153–164 (In German) | DOI

[16] Davey A., “Boundary-layer flow at a saddle point of attachment”, J. Fluid Mech., 10:4 (1961), 593–610 | DOI | MR | Zbl

[17] Gorla R.S.R., “Unsteady laminar axisymmetric stagnation flow over a circular cylinder”, Dev. Mech., 9 (1977), 286–288

[18] Bekezhanova V.B., Andreev V.K., Shefer I.A., “Influence of heat defect on the characteristics of a two-layer flow with the Hiemenz-type velocity”, Interfacial Phenom. Heat Transfer, 7:4 (2019), 345–364 | DOI