Modeling the oxidation process of TiAl and Ti$_{3}$Al intermetallic compounds due to grain-boundary diffusion of oxygen
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 307-321 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A diffusion-kinetic model was proposed to analyze the oxidation process in a nanostructured material with explicit identification of grain boundaries. It was assumed that oxygen migrates faster along the boundaries than it does in the grain volume. The model takes into account the stages of decomposition and formation of intermetallic compounds, as well as the formation of oxides, both within the boundaries and in the grain volume. The problem was solved numerically, and the oxidation dynamics were compared for various materials with different grain properties.
Keywords: grain boundary diffusion, oxidation, mathematical modeling, intermetallic compounds.
@article{UZKU_2023_165_3_a9,
     author = {M. V. Chepak-Gizbrekht and A. G. Knyazeva},
     title = {Modeling the oxidation process of {TiAl} and {Ti}$_{3}${Al} intermetallic compounds due to grain-boundary diffusion of oxygen},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {307--321},
     year = {2023},
     volume = {165},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a9/}
}
TY  - JOUR
AU  - M. V. Chepak-Gizbrekht
AU  - A. G. Knyazeva
TI  - Modeling the oxidation process of TiAl and Ti$_{3}$Al intermetallic compounds due to grain-boundary diffusion of oxygen
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2023
SP  - 307
EP  - 321
VL  - 165
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a9/
LA  - ru
ID  - UZKU_2023_165_3_a9
ER  - 
%0 Journal Article
%A M. V. Chepak-Gizbrekht
%A A. G. Knyazeva
%T Modeling the oxidation process of TiAl and Ti$_{3}$Al intermetallic compounds due to grain-boundary diffusion of oxygen
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 307-321
%V 165
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a9/
%G ru
%F UZKU_2023_165_3_a9
M. V. Chepak-Gizbrekht; A. G. Knyazeva. Modeling the oxidation process of TiAl and Ti$_{3}$Al intermetallic compounds due to grain-boundary diffusion of oxygen. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 307-321. http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a9/

[1] R. Swadzba, K. Marugi, J. Pyclik, “STEM investigations of -TiAl produced by additive manufacturing after isothermal oxidation”, Corros. Sci., 169 (2020), 108617 | DOI

[2] J. Dai, J. Zhu, C. Chen, F. Weng, “High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review”, J. Alloys Compd, 685 (2016), 784–798 | DOI

[3] E. A. Kolubaev, V. E. Rubtsov, A. V. Chumaevskii, E. G. Astafurova, “Nauchnye podkhody k mikro-, mezo- i makrostrukturnomu dizainu ob'emnykh metallicheskikh i polime tallicheskikh materialov s ispolzovaniem metoda elektronno-luchevogo additivnogo proizvodstva”, Fiz. mezomekhan., 25:4 (2022), 5–18 | DOI | MR

[4] H. P. Lim, W. Y.H. Liew, G. J.H. Melvin, Z. T. Jiang, “A short review on the phase structures, oxidation kinetics, and mechanical properties of complex Ti-Al alloys”, Materials, 14:7 (2021), 1677 | DOI

[5] J. C. Fisher, “Calculation of diffusion penetration curves for surface and grain boundary diffusion”, J. Appl. Phys., 22:1 (1951), 74–77 | DOI | MR

[6] I. Kaur, W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, Ziegler Press, Stuttgart, 1989, 422 pp.

[7] C. Herzig, S. V. Divinski, “Grain boundary diffusion in metals: Recent developments”, Mater. Trans, 44:1 (2003), 14–27 | DOI

[8] I. V. Belova, G. E. Murch, “Diffusion in nanocrystalline materials”, J. Phys. Chem. Solids, 64:5 (2003), 873–878 | DOI

[9] A. Knyazeva, O. Kryukova, A. Maslov, “Two-level model of the grain boundary diffusion under electron beam action”, Comput. Mater. Sci., 196 (2021), 110548 | DOI

[10] D. Gryaznov, J. Fleig, J. Maier, “Finite element simulation of diffusion into polycrystalline materials”, Solid State Sci, 10:6 (2008), 754–760 | DOI

[11] J. Jaseliunaite, A. Galdikas, “Kinetic modeling of grain boundary diffusion: The influence of grain size and surface processes”, Materials, 13:5 (2020), 1051 | DOI

[12] A. Díaz, I. I. Cuesta, E. Martinez-Pañeda, J. M. Alegre, “Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron”, Int. J. Fract., 223:1-2 (2020), 17–35 | DOI

[13] J. Jaseliunaite, M. Povilaitis, A. Galdikas, “Kinetic modeling of grain boundary diffusion: Typical, bi-modal, and semi-lamellar polycrystalline coating morphologies”, Coatings, 12:7 (2022), 992 | DOI

[14] M. Hamm, A. Pundt, “FEM simulation supported evaluation of a hydrogen grain boundary diffusion coefficient in MgH$_2$”, Int. J. Hydrogen Energy, 42:35 (2017), 22530–22537 | DOI

[15] J. Svoboda, J. Stopka, F. D. Fisher, “Two-dimensional simulation of reactive diffusion in binary systems”, Comput. Mater. Sci, 95 (2014), 309–315 | DOI

[16] M. A. Bhatia, X. Zhang, M. Azarnoush, G. Lu, K. N. Solanki, “Effects of oxygen on prismatic faults in-Ti: A combined quantum mechanics/molecular mechanics study”, Scripta Mater, 98 (2015), 32–35 | DOI

[17] X. Chen, L. Huang, Y. Jiao, S. Wang, Q. An, Y. Bao, L. Geng, “Mechanisms of oxidation anisotropy between $\alpha$-Ti (0001) and (011$^{-}$0) crystallographic planes in titanium matrix composites”, Mater. Lett., 286 (2021), 129230 | DOI

[18] B. Bokstein, A. Rodin, A. Itckovitch, L. Klinger, “Segregation and phase transitions in grain boundaries”, Diffus. Found, 22 (2019), 160–169 | DOI

[19] G. M. Poletaev, “Self-diffusion in liquid and solid alloys of the Ti-Al system: Molecular dynamics simulation”, J. Exp. Theor. Phys, 133:4 (2021), 455–460 | DOI

[20] M. S. Rakitin, A. A. Mirzoev, D. A. Mirzaev, “First-principles and thermodynamic simulation of elastic stress effect on energy of hydrogen dissolution in alpha iron”, Russ. Phys. J., 60:12 (2018), 2136–2143 | DOI

[21] M. V. Chepak-Gizbrekht, A. G. Knyazeva, “Oxidation of TiAl alloy by oxygen grain boundary diffusion”, Intermetallics, 162 (2023), 107993 | DOI

[22] M. V. Chepak-Gizbrekht, A. G. Knyazeva, “Grain boundary diffusion effect on Ti$_3$Al alloy oxidation”, Russ. Phys. J., 65:7 (2022), 1130–1137 | DOI

[23] Y. Mishin, Herzig Chr, “Diffusion in the Ti-Al system”, Acta Mater, 48:3 (2000), 589–623 | DOI

[24] S. Das, “The Al-O-Ti (Aluminum-oxygen-titanium) system”, J. Phase Equilib., 23:6 (2002), 525–536 | DOI

[25] P. K. Datta, H. L. Du, J. S. Burnell-Gray, R. Ricker, “Corrosion of intermetallics”, Corrosion: Materials, ASM Handbook, 13B, eds. Cramer S.D., Covino, B.S., Jr, ASM Intl, Materials Park, OH, 2005, 490–512 | DOI

[26] Y. Jing, K. Lingyan, C. Xinyu, T. Yongshan, L. Tiefan, X. Tianying, “Improvement in the oxidation resistance of TiAl based alloy by cold spraying Al coating and subsequent interdiffusion treatment”, Persp. mater., 2011, no. S13, 295–300

[27] I. Garip, O. Ozdemir, “Izuchenie termotsiklicheskogo okisleniya dvukhfaznykh elektrospechennykh titanalyuminievykh splavov s dobavkami khroma, molibdena i kremniya”, Fiz. metal. i metalloved, 121:1 (2020), 365–373 | DOI

[28] V. N. Demidov, A. G. Knyazeva, “Multistage kinetics of the synthesis of Ti-Tx Ciy composite”, Nanosci. Technol. Int. J., 10:3 (2019), 195–218 | DOI

[29] P. V. Cobbinah, W. R. Matizamhuka, “Solid-state processing route, mechanical behaviour, and oxidation resistance of TiAl alloys”, Adv. Mater. Sci. Eng., 2019 (2019), 4251953 | DOI