@article{UZKU_2023_165_3_a9,
author = {M. V. Chepak-Gizbrekht and A. G. Knyazeva},
title = {Modeling the oxidation process of {TiAl} and {Ti}$_{3}${Al} intermetallic compounds due to grain-boundary diffusion of oxygen},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {307--321},
year = {2023},
volume = {165},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a9/}
}
TY - JOUR
AU - M. V. Chepak-Gizbrekht
AU - A. G. Knyazeva
TI - Modeling the oxidation process of TiAl and Ti$_{3}$Al intermetallic compounds due to grain-boundary diffusion of oxygen
JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY - 2023
SP - 307
EP - 321
VL - 165
IS - 3
UR - http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a9/
LA - ru
ID - UZKU_2023_165_3_a9
ER -
%0 Journal Article
%A M. V. Chepak-Gizbrekht
%A A. G. Knyazeva
%T Modeling the oxidation process of TiAl and Ti$_{3}$Al intermetallic compounds due to grain-boundary diffusion of oxygen
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2023
%P 307-321
%V 165
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a9/
%G ru
%F UZKU_2023_165_3_a9
M. V. Chepak-Gizbrekht; A. G. Knyazeva. Modeling the oxidation process of TiAl and Ti$_{3}$Al intermetallic compounds due to grain-boundary diffusion of oxygen. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 165 (2023) no. 3, pp. 307-321. http://geodesic.mathdoc.fr/item/UZKU_2023_165_3_a9/
[1] R. Swadzba, K. Marugi, J. Pyclik, “STEM investigations of -TiAl produced by additive manufacturing after isothermal oxidation”, Corros. Sci., 169 (2020), 108617 | DOI
[2] J. Dai, J. Zhu, C. Chen, F. Weng, “High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review”, J. Alloys Compd, 685 (2016), 784–798 | DOI
[3] E. A. Kolubaev, V. E. Rubtsov, A. V. Chumaevskii, E. G. Astafurova, “Nauchnye podkhody k mikro-, mezo- i makrostrukturnomu dizainu ob'emnykh metallicheskikh i polime tallicheskikh materialov s ispolzovaniem metoda elektronno-luchevogo additivnogo proizvodstva”, Fiz. mezomekhan., 25:4 (2022), 5–18 | DOI | MR
[4] H. P. Lim, W. Y.H. Liew, G. J.H. Melvin, Z. T. Jiang, “A short review on the phase structures, oxidation kinetics, and mechanical properties of complex Ti-Al alloys”, Materials, 14:7 (2021), 1677 | DOI
[5] J. C. Fisher, “Calculation of diffusion penetration curves for surface and grain boundary diffusion”, J. Appl. Phys., 22:1 (1951), 74–77 | DOI | MR
[6] I. Kaur, W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, Ziegler Press, Stuttgart, 1989, 422 pp.
[7] C. Herzig, S. V. Divinski, “Grain boundary diffusion in metals: Recent developments”, Mater. Trans, 44:1 (2003), 14–27 | DOI
[8] I. V. Belova, G. E. Murch, “Diffusion in nanocrystalline materials”, J. Phys. Chem. Solids, 64:5 (2003), 873–878 | DOI
[9] A. Knyazeva, O. Kryukova, A. Maslov, “Two-level model of the grain boundary diffusion under electron beam action”, Comput. Mater. Sci., 196 (2021), 110548 | DOI
[10] D. Gryaznov, J. Fleig, J. Maier, “Finite element simulation of diffusion into polycrystalline materials”, Solid State Sci, 10:6 (2008), 754–760 | DOI
[11] J. Jaseliunaite, A. Galdikas, “Kinetic modeling of grain boundary diffusion: The influence of grain size and surface processes”, Materials, 13:5 (2020), 1051 | DOI
[12] A. Díaz, I. I. Cuesta, E. Martinez-Pañeda, J. M. Alegre, “Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron”, Int. J. Fract., 223:1-2 (2020), 17–35 | DOI
[13] J. Jaseliunaite, M. Povilaitis, A. Galdikas, “Kinetic modeling of grain boundary diffusion: Typical, bi-modal, and semi-lamellar polycrystalline coating morphologies”, Coatings, 12:7 (2022), 992 | DOI
[14] M. Hamm, A. Pundt, “FEM simulation supported evaluation of a hydrogen grain boundary diffusion coefficient in MgH$_2$”, Int. J. Hydrogen Energy, 42:35 (2017), 22530–22537 | DOI
[15] J. Svoboda, J. Stopka, F. D. Fisher, “Two-dimensional simulation of reactive diffusion in binary systems”, Comput. Mater. Sci, 95 (2014), 309–315 | DOI
[16] M. A. Bhatia, X. Zhang, M. Azarnoush, G. Lu, K. N. Solanki, “Effects of oxygen on prismatic faults in-Ti: A combined quantum mechanics/molecular mechanics study”, Scripta Mater, 98 (2015), 32–35 | DOI
[17] X. Chen, L. Huang, Y. Jiao, S. Wang, Q. An, Y. Bao, L. Geng, “Mechanisms of oxidation anisotropy between $\alpha$-Ti (0001) and (011$^{-}$0) crystallographic planes in titanium matrix composites”, Mater. Lett., 286 (2021), 129230 | DOI
[18] B. Bokstein, A. Rodin, A. Itckovitch, L. Klinger, “Segregation and phase transitions in grain boundaries”, Diffus. Found, 22 (2019), 160–169 | DOI
[19] G. M. Poletaev, “Self-diffusion in liquid and solid alloys of the Ti-Al system: Molecular dynamics simulation”, J. Exp. Theor. Phys, 133:4 (2021), 455–460 | DOI
[20] M. S. Rakitin, A. A. Mirzoev, D. A. Mirzaev, “First-principles and thermodynamic simulation of elastic stress effect on energy of hydrogen dissolution in alpha iron”, Russ. Phys. J., 60:12 (2018), 2136–2143 | DOI
[21] M. V. Chepak-Gizbrekht, A. G. Knyazeva, “Oxidation of TiAl alloy by oxygen grain boundary diffusion”, Intermetallics, 162 (2023), 107993 | DOI
[22] M. V. Chepak-Gizbrekht, A. G. Knyazeva, “Grain boundary diffusion effect on Ti$_3$Al alloy oxidation”, Russ. Phys. J., 65:7 (2022), 1130–1137 | DOI
[23] Y. Mishin, Herzig Chr, “Diffusion in the Ti-Al system”, Acta Mater, 48:3 (2000), 589–623 | DOI
[24] S. Das, “The Al-O-Ti (Aluminum-oxygen-titanium) system”, J. Phase Equilib., 23:6 (2002), 525–536 | DOI
[25] P. K. Datta, H. L. Du, J. S. Burnell-Gray, R. Ricker, “Corrosion of intermetallics”, Corrosion: Materials, ASM Handbook, 13B, eds. Cramer S.D., Covino, B.S., Jr, ASM Intl, Materials Park, OH, 2005, 490–512 | DOI
[26] Y. Jing, K. Lingyan, C. Xinyu, T. Yongshan, L. Tiefan, X. Tianying, “Improvement in the oxidation resistance of TiAl based alloy by cold spraying Al coating and subsequent interdiffusion treatment”, Persp. mater., 2011, no. S13, 295–300
[27] I. Garip, O. Ozdemir, “Izuchenie termotsiklicheskogo okisleniya dvukhfaznykh elektrospechennykh titanalyuminievykh splavov s dobavkami khroma, molibdena i kremniya”, Fiz. metal. i metalloved, 121:1 (2020), 365–373 | DOI
[28] V. N. Demidov, A. G. Knyazeva, “Multistage kinetics of the synthesis of Ti-Tx Ciy composite”, Nanosci. Technol. Int. J., 10:3 (2019), 195–218 | DOI
[29] P. V. Cobbinah, W. R. Matizamhuka, “Solid-state processing route, mechanical behaviour, and oxidation resistance of TiAl alloys”, Adv. Mater. Sci. Eng., 2019 (2019), 4251953 | DOI